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Abstract 

Professional probabilists have long argued over what probability means, with, for 
example, Bayesians arguing that probabilities refer to subjective degrees of confi- 
dence and frequentists arguing that probabilities refer to the frequencies of events in 
the world. Recently, Gigerenzer and his colleagues have argued that these same 
distinctions are made by untutored subjects, and that, for many domains, the human 
mind represents probabilistic information as frequencies. We analyze several reasons 
why, from an ecological and evolutionary perspective, certain classes of problem- 
solving mechanisms in the human mind should be expected to represent probabilistic 
information as frequencies. Then, using a problem famous in the "heuristics and 
biases" literature for eliciting base rate neglect, we show that correct Bayesian 
reasoning can be elicited in 76% of subjects-  indeed, 92% in the most ecologically 
valid condi t ion-  simply by expressing the problem in frequentist terms. This result 
adds to the growing body of literature showing that frequentist representations cause 
various cognitive biases to disappear, including overconfidence, the conjunction 
fallacy, and base-rate neglect. Taken together, these new findings indicate that the 
conclusion most common in the literature on judgment under uncertainty- that our 
inductive reasoning mechanisms do not embody a calculus of probability - will have 
to be re-examined. From an ecological and evolutionary perspective, humans may 
turn out to be good intuitive statisticians after all. 
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I. Introduction 

During the early 1800s, when mathematical theories of probability were 
only a little over a century old, Pierre Laplace argued that probability 
theory was "only good sense reduced to calculus" (Laplace, 1814/1951, p. 
196). When theories of probability conflicted with the intuitions of "reason- 
able men", mathematicians went back to the drawing board and changed 
their theories: a clash between probability theory and intuition meant the 
theory was wrong, not the intuition (Daston, 1980, 1988). 

By the 1970s, this view of the relationship between intuition and 
probability theory had been reversed. In cognitive psychology, we began to 
view clashes between intuition and probability theory as evidence that our 
intuitions were wrong, not the theory. According to Kahneman and 
Tversky, for example, "The presence of an error of judgment is demon- 
strated by comparing people's responses either with an established fact (e.g., 
that the two lines are equal in length) or with an accepted rule of arithmetic, 
logic, or statistics" (1982, p. 123). In a series of seminal papers on inductive 
reasoning, Kahneman and Tversky used evidence of such clashes to reject 
the theory that "good sense" embodied a calculus of probability: 

In making predictions and judgments under uncertainty, people do not appear to follow the 
calculus of chance or the statistical theory of prediction. Instead, they rely on a limited 
number of heuristics which sometimes yield reasonable judgments and sometimes lead to 
severe and systematic errors. (Kahneman & Tversky, 1973, p. 237) 

The view that people's untutored intuitions do not follow a calculus of 
probability has become the conventional wisdom in psychology today. The 
literature on human judgment under uncertainty has become a catalog of 
"cognitive biases" and "normative fallacies", and terms such as "base-rate 
fallacy", "overconfidence" and "conjunction fallacy" have entered the 
lexicon of cognitive psychology. In studies of Bayesian reasoning, for 
example, psychologists argue about whether people ignore base rates 
entirely or sometimes use them slightly, but not about whether untutored 
subjects follow the calculus of Bayes' rule. It is presumed that they do not. 

As well established as this conclusion appears to be, we think it is 
premature. For one thing, there is not just one "calculus of probability", but 
many, and the fact that subjects do not follow one of them does not 
preclude the possibility that they are following another. There is Bayes's 
theorem, Neyman-Pearson decision theory, Fisherian null-hypothesis test- 
ing, non-additive Baconian probabilities- all of which have different as- 
sumptions and are therefore appropriate to different kinds of problems. 1 

Not only are there different statistical theories, but professional probabil- 

~ Indeed, one can even develop specialized normative systems for computing probabilities 
and making decisions, which are tailored to particular domains or circumstances. Models from 
evolutionary biology of risk-sensitive foraging are an example (Real & Caraco, 1986). 
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ists themselves disagree- often violently- about the central issues in their 
field. Different probabilistis looking at the same problem will frequently 
give completely different answers to it - that is, they will make contradictory 
claims about which answer is normatively correct. They even disagree about 
what probability itself means. For example, Bayesians argue that probability 
refers to a subjective degree of confidence and, accordingly, because one 
can express one's confidence that a single event will occur, one can sensibly 
refer to the probability of a single event. In contrast, frequentists argue that 
probability is always defined over a specific reference class (such as an 
inf ini te-or  very large-number  of coin tosses), and refers to the relative 
frequency with which an event (such as "heads") occurs. A frequentist 
would say that the calculus of probability cannot be used to compute the 
"probability" of a single event, because a single event cannot have a 
probability (i.e., a relative frequency). 

The conceptual distinction between the probability of a single event and a 
frequency is fundamental to mathematical theories of probability. Recently, 
Gigerenzer (1991) has argued that the same conceptual distinction is made 
by untutored subjects. He has further argued that, for many domains, the 
human mind represents probabilistic information as frequencies. In essence, 
Gigerenzer has hypothesized that some of our inductive reasoning mecha- 
nisms are good "intuitive statisticians" of the frequentist school. 

At first glance, this hypothesis seems implausible, for two reasons. First, it 
seems to fly in the face of the considerable body of evidence assembled over 
the last 20 years in the literature on judgment under uncertainty that 
supports the conclusion that our inductive reasoning procedures do not 
embody a calculus of probability. But most of these experiments asked 
subjects to judge the probability of a single e v e n t - a  question which a 
frequentist would say has nothing to do with the mathematical theory of 
probabil i ty-and which frequentist mental mechanisms would find hard to 
interpret. This leaves open the possibility that people are able to make 
intuitive judgments that accord with a calculus of probability, such as 
Bayes's rule, as long as they represent probabilities as frequencies. 

The second reason this hypothesis seems unlikely on its face is that it 
seems absurd to claim that untutored subjects are intuitively making a subtle 
distinction that professional probabilists still argue about in their technical 
journals. But if you apply David Marr's (1982) approach to the problem of 
statistical inference and ask what design features you would expect of 
mechanisms that can operate well under evolutionarily standard and 
ecologically realistic conditions, the picture changes dramatically. As we will 
discuss, an architecture designed along frequentist principles is what you 
would expect given a Marrian functional analysis of statistical inference. 

In this article, we will explore what we will call the "frequentist 
hypothesis"- the  hypothesis that some of our inductive reasoning mecha- 
nisms do embody aspects of a calculus of probability, but they are designed 
to take frequency information as input and produce frequencies as output. 
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We will briefly review evidence from the literature indicating that subjects 
do conceptually distinguish between frequencies and single-event prob- 
abilities, and that there exist cognitive mechanisms that encode frequency 
information automatically. We will then report a strong test of the fre- 
quentist hypothesis: using a problem famous in the "heuristics and biases" 
literature for eliciting low levels of Bayesian performance, we tested to see 
whether frequentist representations would elicit from subjects answers that 
conform to Bayes' rule. 

1.1. Subjective probabilities versus objective frequencies: why do Bayesians 
and frequentists disagree? 

To understand why some of our inductive reasoning mechanisms might be 
designed to be intuitive frequentists, it is important to first understand why 
Bayesians and frequentists differ in their interpretation of probability 
theory. 

Mathematical theories of probability are theories of inductive reasoning: 
they specify how to make inferences from data to hypotheses. But the 
mathematization of inductive inference has not solved Hume's puzzle; there 
is still no universally agreed upon method of statistical inference 
(Gigerenzer et al., 1989). There are deep divisions among professional 
probabilists, not only over how statistical inference should be conducted, 
but over the very meaning of the word "probability". One of the deepest 
divisions is between the Bayesians and the frequentists. 

In science, what everyone really wants to know is the probability of a 
hypothesis given d a t a - p ( H I D  ). That is, given these observations, how 
likely is this theory to be true? This is known as an inverse probability or a 
posterior probability. The strong appeal of Bayes' theorem arises from the 
fact that it allows one to calculate this probability: p(HID) = p(H)p(DIH) / 
p(D) ,  where p ( D ) = p ( H ) p ( D I H  ) + p ( - H ) p ( D I - H  ). Bayes' theorem also 
has another advantage: it lets one calculate the probability of a single event, 
for example, the probability that a particular person, Mrs. X, has breast 
cancer, given that she has tested positive for it. (This property makes Bayes' 
theorem popular among economists, who are interested in calculating values 
such as the probability that an individual consumer will choose one 
alternative over another.) 

Despite these advantages, most professional statisticians are frequentists, 
not Bayesians. Even the statistical methods for scientific inference that are 
canonically applied in scientific psychology, such as Fisherian null-hypoth- 
esis testing and Neyman-Pearsonian decision theory (known to psycho- 
logists as signal detection theory), were derived from the frequentist school. 
They allow one to calculate the probability of data given a hypothesis- 
p(DIH ) - which is known as a likelihood; for example, a level of significance 
is a likelihood. Unfortunately, they do not allow one to calculate p(HID), 
an inverse probability. 

Why, then, is Bayes' theorem so rarely used in mathematics and as a 
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method of scientific inference? R.A. Fisher, one of the architects of modern 
probability theory, tells us in his foundational book, The Design of  
Experiments, in a section tellingly entitled "The rejection of inverse 
probability": 

The axiom leads to apparent mathematical contradictions. In explaining these contradictions 
away, advocates of inverse probability seem forced to regard mathematical probability, not 
as an objective quantity measured by observed frequencies, but as measuring merely 
psychological tendencies, theorems respecting which are useless for scientific purposes. 
(Fisher, 1951, pp. 6-7)  

In other words, to calculate the probability of a single event, one must 
abandon the notion that probability refers to the frequency of an event; one 
must view probability as an individual's subjective degree of confidence in a 
hypothesis. A troubling consequence of this interpretation of probability is 
that, given identical data, p(HID) can differ from person to person. Yet 
science strives for intersubjective agreement and consensual methods for 
arriving at knowledge; to accept Bayes' theorem is to renounce that goal. 

Here is why: to use Bayes' theorem, one must first specify one's prior 
probability that a hypothesis is true - p(H). To get the posterior probability, 
p(HID), one revises the prior probability either up or down, depending on 
p(DIH), which can be determined from experiments. But how does one 
determine p(H)? Some psychologists believe that p(H) should be set 
according to a particular base rate in the population, and consider it an error 
when subjects do not do so: for example, Tversky and Kahneman have 
called base-rate neglect "a sharp violation of Bayes' rule" (1974, p. 1124). 
But Bayes' theory does not require that the prior probability be set at a base 
rate. In fact, Bayes' theory places no constraints whatsoever on how one 
should set one's prior probability. Because Bayesian probabilities are 
subjective, p(H) can vary from person to person, depending on each 
person's judgment of what is reasonable. And there are many different 
normative theories specifying what is reasonable (Gigerenzer & Murray, 
1987). 2 Consequently, p(HID), which is a function of P(H), can also differ 

2 For example, consider the "cab problem",  in which a subject is told that there are two cab 
companies in the city, Blue and Green, and is asked how probable it is that a cab that was 
involved in a hit-and-run accident at night was Blue (e.g., Bar-Hillel, 1980). The subject is told 
that a witness who is known to be correct 80% of the time (the reliability) identified the cab as 
Blue, and that 15% of cabs in the city are Blue and 85% are Green (the base rate). But why 
should the subject use this base rate - "percent of Blue cabs in the city" - as his or her prior 
probability? There are many other legitimate possibilities (see, for example, Gigerenzer, 1990). 
For instance, suppose the subject knows based on earlier experience that drivers from small cab 
companies are less well trained and therefore relatively more likely to cause accidents, or that 
drivers from small cab companies are morely likely to flee the scene of an accident because they 
are less able to afford higher insurance premiums than drivers from the larger, more well- 
organized companies, which assume some of their drivers' insurance burden. Any real-world 
knowledge of this kind should be integrated into the subject's prior probability estimate. 
Consequently,  a large number of prior probability estimates are defensible, and a good 
Bayesian could quite legitimately ignore the "'percent of Blue cabs in city" base rate. 
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from person to person. This means that different people can draw entirely 
different conclusions from one and the same experiment. 

For example, having read extensively about "heuristics and biases" in 
inductive reasoning, you might think that the hypothesis we are testing in 
this article is unlikely to be true, and therefore set your prior probability 
low-perhaps at .2. But another reader might think our hypothesis is 
reasonably likely to be true, and therefore set her prior probability higher-  
perhaps at .6. Let us say that the experiments then showed that p(D]H) was 
.7 and p (D] -H)  was .3. What would Bayes' theorem lead each of you to 
conclude from these experiments? Given these data, you would conclude 
that the probability of the hypothesis is .37, whereas the other reader would 
conclude that it is .78. In other words, her confidence that the hypothesis is 
true would be more than twice what yours would be. If one is seeking a 
method of inductive reasoning that is both grounded in the world and leads 
to intersubjective agreement, then Bayes' theorem obviously cannot be 

• 3 i t -  as Fisher, for instance, recognized. 
Suppose one rejects the notion that probability refers to subjective 

degrees of confidence, as von Mises, Neyman, Pearson, and many other 
probabilists have. Why can't one be a frequentist and still talk about the 
probability of a single event? 

Accepting the frequentist interpretation of probability as the relative 
frequency of an event defined over a specified reference class entails the 
idea that it is meaningless to refer to the probability of a single event. First, 
a single event either happens or not, and therefore cannot have a "relative 
frequency". But there is a second, more far-reaching reason. A single event 
cannot have "a" probability because it belongs to many reference classes, 
not just one. In fact, the number of reference classes an event belongs to is 
potentially infinite, depending on the system of categorization applied to the 
event. Let us illustrate this problem with an updated version of an example 
provided by Richard von Mises, a twentieth-century pioneer of probability 
theory, and a thoroughgoing frequentist. 

Consider the reference class, "All American women between the ages of 
35 and 50", and assume that the attribute we are interested in is the 
probability that women in this category get breast cancer. Let us say that the 
relative frequency with which this happens in a year is 4 out of 100. Can we 
meaningfully "collapse" this figure onto a single individual, says Mrs. X, 
who is 49, perfectly healthy, and whose mother had breast cancer? Can we 
say that Mrs. X has a 4% chance of getting breast cancer in the next year? 
According to von Mises, such reasoning would be "utter nonsense" (1957/ 
1981, p. 18). This is because Mrs. X belongs to an indefinitely large set of 

3 Not if one wants to be consistent, at least. Fisher, for example, seems to have switched back 
and forth in an inconsistent way between his frequentist view and his interpretation of the level 
of significance as the degree of confidence that one should have in a hypothesis (see for 
example, Gigerenzer et al., 1989, pp. 98-106). 
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different reference classes, and the relative frequency of breast cancer may 
differ for each of them. For example, the relative frequency of breast cancer 
for the reference class "women between 45 and 90", to which Mrs. X also 
belongs, is higher - say 11%. She is also a member of the category "women 
between 45 and 90 whose mothers had breast cancer",  and the relative 
frequency for this reference class is even h i g h e r - s a y  22%. So what is the 
"probabil i ty"  that Mrs. X will get breast cancer? Is it 4%? 11%? 22%? We 
can devise as many different figures as we can devise reference classes to 
which Mrs. X belongs. 

Can we solve the problem by restricting the reference class as far as 
possible, by taking into account all of Mrs. X's individual characterist ics-  
for example, "All women who are 49, live in Palo Alto, smoke, do not 
drink, had a mother  with breast cancer, are Silicon Valley executives, had 
two children before the age of 25 and one after 40, are of Greek descent 
. . . " ?  This approach doesn't work either. The more narrowly we define the 
reference class, the fewer individuals there are in it, until we are left, at the 
limit, with only one person, Mrs. X. This creates an indeterminacy problem: 
the fewer the number of individuals in a reference class, the less reliable is 
any relative frequency derived from that c l a s s - t h e  "error  te rm" grows 
towards the infinitely large. And at the limit of only one person in a 
reference class, "relative frequency" loses all meaning. 

If probability refers to relative frequency, then the question, "What  is the 
probability of a single event?" has no meaning; if one wants to talk about 
the probability of a single event, then one must accept the interpretation of 
probability as subjective degrees of confidence. Normatively, it is a package 
deal: one cannot be a frequentist and accept single-event probabilities (see 
footnote  3). 

Although a frequentist cannot meaningfully speak about the probability of 
a single event, frequentist statistics can be used to make a decision about a 
single case, such as whether Mrs. X, who has tested positive for breast 
cancer, should start treatment. Indeed, Neyman-Pearson decision theory is 
a frequentist method that was expressly designed for making such decisions. 
By making a distinction between believing that a hypothesis is true and 
behaving as if it were true, it provides a method for combining information 
about the relative frequency of events with information about the costs and 
benefits associated with alternative courses of action (i.e., with a given 
matrix of payoffs for hits, misses, false alarms, and true rejections). In this 
system, each individual decision is made in accordance with rules that would 
yield the best payoff across the expected series of decisions. Assume, for 
example,  that 80% of women who test positive for cancer actually have it. If 
the costs of not treating a woman with cancer are high and the costs of 
treating a healthy woman are low, then administering treatment to all 
women who test positive will save more lives than withholding treatment.  
Consequently,  the physician should act as if Mrs. X has cancer, and treat 
her, even though the physician believes that 20% of the women he or she 
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will be treating are perfectly healthy. Notwithstanding the fact that they are 
sometimes conflated, making decisions and estimating probabilities are two 
very different things. Although probability information can serve as input to 
a decision-making procedure, no decision can be rationally made until it is 
coupled to information about values. 

At this point it is important that we distinguish between the Bayesian 
interpretation of probability, and the calculus of Bayes' rule. The calculus of 
Bayes' rule, which is nothing more than a formula for calculating a 
conditional probability, is a simple consequence of the elementary axioms of 
probability theory as laid out, for example, by Kolmogorov (1950). This 
axiomatic system can be interpreted in a number of ways, and both the 
subjectivist and the frequentist interpretations of probability are consistent 
with these axioms. One can use Bayes' rule to calculate the probability of a 
single event, such as "What is the probability that Mrs. X actually has breast 
cancer, given that she tested positive for it?", which entails interpreting 
probability as a subjective degree of confidence. But one can also use Bayes' 
rule to calculate a relative frequency, such as "How many women who test 
positive for breast cancer actually have it?" In this second case, one 
interprets probability as a frequency: the inputs to the equation are 
frequencies, and the output is a frequency. The first case entails a 
subjectivist interpretation, the second a frequentist interpretation. But in 
both cases Bayes' rule was used to calculate the relevant probability. 

So whether you are a frequentist or a subjectivist, the formula known as 
"Bayes' rule" is a component of your calculus of probability. It specifies 
constraints that must be satisfied when prior probabilities and likelihoods 
are mapped onto posterior probabilities. In practice, these constraints can 
be realized by many different algorithms- ones that multiply and divide, 
ones that count category members in a representative population, and so on. 

What, then, does it mean to say that a person's reasoning is Bayesian? It 
depends on which professional community you are addressing. When 
philosophers and mathematicians refer to themselves as Bayesian, with a 
capital "B",  it means they take a subjectivist position on the nature of 
probability. But the subjectivist/frequentist debate has played virtually no 
role in experimental psychology. When psychologists (including ourselves) 
argue about whether people do, or do not, engage in Bayesian reasoning, 
they are discussing the extent to which our inductive reasoning mechanisms 
map inputs onto the same outputs that Bayes' rule would, regardless of the 
actual cognitive procedures employed to accomplish this. That is, psycho- 
logists are asking whether humans have inductive reasoning mechanisms 
that implement the constraints specified by Bayes' rule. They count any 
answer that satisfies these constraints as correct-  whether it is expressed as 
a frequency or single-event probability, and regardless of the algorithm by 
which it was computed. (In fact, the design of most of the relevant 
experiments contains no way of determining the method by which subjects 
arrive at their answers.) Psychologists use these inclusive criteria because 
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they are concerned with the calculus of Bayes' rule, not its interpretation. 
They want to know whether humans are "good" intuitive statisticians - that 
is, whether their inductive reasoning mechanisms embody aspects of a 
calculus of probability. 

That is our concern as well. To remind the reader of this, we will use the 
term bayesian reasoning-with a small " b " - t o  refer to any cognitive 
procedure that causes subjects to reliably produce answers that satisfy 
Bayes' rule, whether that procedure operates on representations of fre- 
quencies or single-event probabilities. In this way we can, without contradic- 
tion, ask the question, "Do frequentist representations elicit bayesian 
reasoning?" 

1.2. Re-evaluating the "prior probability" of judgmental heuristics 

In science, ideas rise and fall not only because of the evidence for them, 
but also because they seem plausible or compell ing-  because people assign 
them a high "prior probability". Quite apart from the evidence for it, the 
hypothesis that people cannot spontaneously use a calculus of probability 
and rely instead on judgmental heuristics seems plausible and compelling 
because of certain arguments that have been made in cognitive psychology. 
In this section we evaluate these arguments, to see if the "heuristics and 
biases" hypothesis deserves the high prior probability that it is usually 
accorded .4 

One of the goals of cognitive psychology is to discover what information- 
processing mechanisms are reliably developing features of the human mind - 
that is, what mechanisms can be thought of as part of human nature. We 
assume that this goal is shared by those cognitive psychologists who study 

4 The purpose of this section is to examine some of the core principles underlying an 
influential and persistant school of thought within psychology, and to suggest an alternative 
analytic framework that we think may lead to new discoveries and a consequent re-evaluation 
of human inductive competences. It is not intended as an historical exigesis of the ideas of 
Tversky, Kahneman,  or any other individual. Like all creative scientists, their ideas are 
complex and may change over time. That we quote heavily from Tversky and Kahneman 
should be seen as a compliment to the power of their ideas, the clarity with which they have 
expressed them, and the centrality that their arguments have come to have in the intellectual 
community that studies human statistical inference. Our concern is with the widely accepted 
logic of the heuristics and biases position, rather than with its creators. 

Indeed,  among the scores of factors and framing effects that Kahneman and Tversky have 
discussed over the years as potentially impeding or facilitating "'correct" judgments,  they have 
mentioned frequencies (Kahneman & Tversky, 1982). The fact that such a powerful and 
organizing dimension can nevertheless remain virtually uninvestigated for two decades under- 
scores why we think the shift to a new analytic framework is in order. The assumption of severe 
processing limitations has forestalled many researchers from seriously considering or investigat- 
ing a contrasting possibility: that our minds come equipped with very sophisticated intuitive 
statistical competences that are well-engineered solutions to the problems humans normally 
encountered in natural environments (Tooby & Cosmides, 1992b), and that ecologically valid 
input (e.g., frequency formats) may be necessary to activate these competences. 
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judgment under uncertainty, and that this is why Tversky and Kahneman 
liken cognitive heuristics to perceptual heuristics and the study of cognitive 
illusions to the study of perceptual illusions (Tversky & Kahneman, 1974; 
Kahneman & Tversky, 1982). Vision scientists study perceptual illusions in 
order  to discover perceptual heuristics, which are usually thought of as 
reliably developing features of the human brain. As Kahneman and Tversky 
put it, "we use illusions to understand principles of n o r m a l  perception" 
(1982, p. 123; emphasis ours). 

The perceptual analogy extends to the choice of experimental methods in 
the judgment under uncertainty program: to document heuristics and biases, 
researchers frequently use the same experimental logic that psychophysicists 
use to demonstrate that a perceptual heuristic is a design feature of the 
cognitive architecture. For example, pains have been taken to show that 
cognitive biases are widespread, not caused by motivational factors, and 
difficult to eradicate (Nisbett & Ross, 1980). Cognitive biases "seem 
reliable, systematic, and difficult to eliminate" (Kahneman & Tversky, 1972, 
p. 431); a judgmental error often "remains attractive although we know it to 
be an er ror"  (1982, p. 123). The persistence of a perceptual illusion even 
when one "knows bet ter"  is usually taken as evidence that it is a reliably 
developing feature of the brain. The persistence of cognitive illusions among 
those who have some expertise in inferential statistics plays a similar role in 
the heuristics and biases literature (Tversky & Kahneman, 1971; Casscells, 
Schoenberger,  & Graboys, 1978): 

The reliance on heuristics and the prevalence of biases are not restricted to laymen. 
Experienced researchers are also prone to the same biases - when they think intuitively . . .  
Although the statistically sophisticated avoid elementary errors, such as the gambler's 
fallacy, their intuitive judgments are liable to similar fallacies in more intricate and less 
transparent problems. (Tversky & Kahneman, 1974, p. 1130) 

The message is that statistical training may create new, competing 
cognitive structures, but our heuristics and biases will remain. 

The implication of this experimental logic is that judgmental heuristics 
and biases 5 -  like perceptual heuristics and b i a s e s - a r e  reliably developing 
cognitive processes, and not accidents of personal history, such as whether 
one was schooled in probability and statistics. Indeed, if the scientific 
community thought that the documentation of normative fallacies revealed 
nothing more fundamental about the human mind than how one was 
schooled, then the heuristics and biases program would be of no more 
interest than a research program documenting that native speakers of 
English with no schooling in Japanese commit "errors and fallacies" when 
they try to conjugate Japanese verbs. 

Although heuristics and biases are believed to be reliably developing 
cognitive processes, mechanisms embodying statistical rules are not thought 

5 or the learning mechanisms that induce them. 



L. Cosmides, J. Tooby / Cognition 58 (1990) 1-73 l l  

to be part of our architecture. According to Kahneman and Tversky, "the 
laws of chance are neither intuitively apparent, nor easy to apply" (1972, p. 
431). Pointing out that few people discover statistical rules even though 
"everyone is exposed, in the normal course of life, to numerous examples 
from which these rules could have been induced" (Tversky & Kahneman, 
1974, p. 1130), they argue that the human mind is not designed to 
spontaneously learn such rules: "Statistical principles are not learned from 
everyday experience because the relevant instances are not coded appro- 
priately" (1974, p. 1130). 

Evolutionary questions are inescapable in psychology. Any claim that one 
cognitive process is a reliably developing feature of the human mind 
whereas another cognitive process is not, raises the question, "Why would 
that design have been selected for rather than the other one?" In principle, 
the adaptive problem of judging uncertain events could be solved by 
judgmental heuristics or by statistical rules. If making accurate judgments 
under uncertainty is an important adaptive problem, why would natural 
selection have designed a mind that uses error-prone heuristics rather than 
an accurate calculus of probability? 

Although they do not cast their answer in explicitly evolutionary terms, 
Tversky and Kahneman answer this question thus: cognitive psychology "is 
concerned with internal processes, mental limitations, and the way in which 
the processes are shaped by these limitations" (Kahneman, Siovic, & 
Tversky, 1982, p. xii). Mental limitations prevent one from correctly solving 
problems that are too complex. Heuristics are strategies that simplify 
complex tasks and get the job done well enough-  they don't optimize, but 
they do "satisfice". Heuristics "are highly economical and usually effective"; 
they "reduce the complex tasks of assessing probabilities and predicting 
values to simpler judgmental operations", and "make them tractable for the 
kind of mind that people happen to have" (Tversky & Kahneman, 1974, pp. 
1131, 1124; Kahneman et al., 1982, p. xii). This line of reasoning was 
developed in the 1950s by Herbert Simon (e.g., 1956), who they credit for 
having helped inspire the heuristics and biases program (Kahneman et al., 
1982, pp. xi-xii). 

The logic of this position is perfectly respectable. It is obviously true that 
a computational mechanism cannot solve a problem that is more complex 
than it can handle. It is also true that natural selection, which is a "better 
than . . . .  prmople, does not necessarily produce "optimal" algorithms. But are 
there good grounds for applying this general line of reasoning to this 
domain-  that is, for thinking that people will judge uncertain events using 
heuristics rather than a calculus of probability? Bayes' rule, for example, is 

" A n  algorithm that is "bet ter  than"  an existing alternative can be selected for, whether  it 
optimizes or not. Also, "optimali ty" is not as simple a concept as the heuristics and biases 
literature might lead one to think; it must  always be defined with respect to a predesignated set 
of constraints  (see, for example,  Maynard Smith, 1978). 
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simple enough-  a small, hand-held calculator can perform the necessary 
operations with only a line or two of code. So why should the application of 
Bayes' rule be difficult for an information-processing system of the size and 
complexity of the human brain? 

There are several problems with the mental limitation argument, some 
related to the complexity of the presumed mechanisms, others to the 
complexity of the task. 

(1) Necessity of heuristics. The visual system must use heuristics because 
there is no alternative "calculus of vision". Perceptual heuristics are 
necessary because the only information available in the environment for the 
system to use are cues that are not perfectly correlated with the size, shape, 
color, and texture of distal objects. In contrast, there is a calculus of 
probability, and its rules are simple enough to be implemented in a 
calculator. 

(2) Mechanism complexity. Although determining whether and how a 
statistical rule should be applied to a given domain can be complex, 
statistical rules themselves a r e  n o t .  7 Indeed, natural selection has produced 
computational mechanisms in the visual system that are vastly more complex 
than those that would be required to apply the calculus of Bayes' rule. 
There is no "natural limit" on evolved complexity that would prevent the 
evolution of computational mechanisms that embody Bayes' rule. 

(3) Task complexity. This justification assumes that some tasks are 
inherently complex, and some are inherently simple, independent of the 
nature of the computational mechanisms that solve them. But whether a 
problem is complex or simple depends, in part, 8 on the design of the 
computational mechanisms that are available to solve it. To borrow an 
example from Sperber (1985), recalling a 20-digit number is simple for a 
digital computer, but difficult for a human being, whereas remembering the 
gist of the story of Little Red Riding Hood is simple for a human being, but 
difficult for a digital computer. Seeing objects seems effortless compared to 
long division because we have mechanisms specially designed for visual 
perception, but not for long division-not because seeing objects is a 

7 For the purposes of this point, complexity can be defined in any of a number of ways: 
number  of processing steps, amount of information to be integrated or reconstructed, and so 
o n .  

8 It also depends on the quality of the information available in the environment for solving 
the problem, as when information is degraded or ambiguous due either to permanent properties 
of the world or because it is coming from an antagonistically co-evolving organism. But 
judgment under uncertainty researchers are not referring to this kind of task complexity; 
because subjects are told the relevant information, it is usually assumed that the complexity of 
the task resides in the computations necessary rather than in the mapping from world to rule. 
Thus, little research has been done on whether "errors" are due to discrepancies between the 
subject 's and t h e  experimenter 's  judgment about how the problem information should be 
mapped onto probabilistic concepts. 
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"simpler task" than long division. (Indeed, machine vision has proved 
elusive at a time when statistical programs have become ubiquitous on 
desktop computers.) 

(4) Specifying the limitation. It is true that previously existing structures 
can limit what mechanisms can evolve. Such phylogenetic constraints are 
responsible, for example, for the fact that nerve cells project from the front 
of the retina rather than the back, causing a blind spot in vision where they 
meet to form the optic nerve bundle. But the argument that computational 
procedures embodying statistical rules did not evolve (or cannot be 
induced 9) due to "mental limitations" is empirically vacuous unless one 
specifies what those limitations are. To say that we cannot solve a statistical 
problem correctly because it is "too complex" or because we have "mental 
limitations" is merely to restate the fact that we did not evolve the 
mechanisms for correctly solving it. It begs the question of why we did not. 

In short, the argument for judgmental heuristics appears weak when 
scrutinized from an evolutionary perspective. A calculus of probability 
exists, it is not inherently complex, it can be instantiated by simple 
mechanisms, and there are no known phylogenetic constraints that would 
prevent the evolution of such mechanisms. There is nothing inherently 
flawed with the line of reasoning used by Simon and others to argue for the 
possibility of heuristics of reasoning; rather, its surface plausibility breaks 
down in the particular case of the probability calculus. 

Indeed, the superficial plausibility of the mental limitation argument 
depends on a certain old-fashioned image of the mind: that it has the 
architecture of an early model, limited-resource general-purpose computer 
that is incapable of running programs of much complexity. Given this image, 
one would expect crude rules-of-thumb rather than well-designed mecha- 
nisms because a complex set of procedures cannot be run by such a limited 
system. But we now know that the human mind contains a number of 
specialized mechanisms of considerable complexity, from color vision, to 
motor control, to grammar acquisition (see, for example, Shepard, 1992; 
Bizzi, Mussa-Ivaldi, & Giszter, 1991; and Pinker, 1984, respectively). How, 
then, can one sustain the argument that a computationally trivial algorithm 
instantiating Bayes' rule is too complex to be run by our cognitive 
architecture, but that vision is not? 

One could claim, post hoc, that there are neural or developmental 
constraints of unknown nature that allow the evolution of mechanisms for 
maintaining color constancy and induction of the past tense, but that 
preclude the evolution of well-designed mechanisms for statistical 

To say that we cannot induce statistical rules "because the relevant instances are not coded 
appropriately" (Tversky & Kahneman, 1974, p. 1130) simply pushes the problem one step 
back: one must explain what kept us from evolving a computational system that does code the 
relevant instances appropriately. 
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inference - but there is nothing, a priori, to make one think this is true. In 
fact, there are good reasons to think it is false. Behavioral ecologists who 
study foraging have found evidence of very sophisticated statistical reason- 
ing in organisms with nervous systems that are considerably simpler than our 
own, such as certain birds and insects (e.g., Real, 1991; Real & Caraco, 
1986). Moreover, John Staddon (1988) has argued that in animals from sea 
snails to humans, the learning mechanisms responsible for habituation, 
sensitization, classical conditioning and operant conditioning can be formally 
described as Bayesian inference machines. 

This evidence suggests that bird brains and insect minds are capable of 
performing statistical calculations that some psychologists have assumed 
human brains are "too limited" to perform. But if a bird brain can embody 
a calculus of probability, why couldn't a human brain embody one as well? 
We are not arguing here that humans must have well-designed mechanisms 
for statistical inference-we are merely arguing that the prevailing argu- 
ments for why we should not have such mechanisms are not substantial. As 
long as chance has been loose in the world, animals have had to make 
judgments under uncertainty. If an adaptive problem has endured for a long 
enough period, and is important enough, then mechanisms of considerable 
complexity can evolve to solve it. When seen in this light, the hypothesis 
that humans have inductive reasoning mechanisms that embody a calculus of 
probability, just like other organisms do, doesn't seem so intrinsically 
improbable. 

1.3. Raising the prior probability of  the frequentist hypothesis: Marr and 
evolution 

What, then, should the design of well-engineered reasoning mechanisms 
be like? Until you answer this Martian question, you cannot construct 
experiments that can detect the presence of such designs or recognize their 
operation (Marr, 1982; Cosmides & Tooby, 1987). In this section we will 
discuss why, if we do have well-designed mechanisms for statistical reason- 
ing, one might expect them to operate on frequency representations. 

Gigerenzer's advocacy of a frequentist approach to inductive reasoning 
draws much of its motivation from a scrupulous analysis of probability 
theory and the logic of its application. But the hypothesis that at least some 
cognitive machinery in the human mind operates on frequentist principles 
makes sense from a functional, that is, from an evolutionary, point of view 
as well. By an evolutionary and functional view we simply mean that one 
should expect a mesh between the design of our cognitive mechanisms, the 
structure of the adaptive problems they evolved to solve, and the typical 
environments that they were designed to operate i n -  that is, the ones that 
they evolved in. Just as David Marr (1982) studied the reflectant properties 
of surfaces to understand what kinds of information are available to our 
visual system, one can ask what kinds of probabilistic information would 
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have been available to any inductive reasoning mechanisms that we might 
have evolved. Because cognitive mechanisms evolved to recognize and 
process information in the form it was regularly presented in the environ- 
ment of evolutionary adaptedness, to study inductive reasoning one must 
examine what form such problems regularly took, TM and what form the 
information relevant to solving such problems took. 

In the modern world, we are awash in numerically expressed statistical 
information. But our hominid ancestors did not have access to the modern 
system of socially organized data collection, error checking, and information 
accumulation which has produced, for the first time in human history, 
reliable, numerically expressed statistical information about the world 
beyond individual experience. Reliable numerical statements about single 
event probabilities were rare or nonexistent in the Pleistocene - a conclusion 
reinforced by the relative poverty of number terms in modern band-level 
societies. In our natural environment,  the only database available from 
which one could inductively reason was one's own observations, and 
possibly those communicated by the handful of other individuals one lived 
with. 

More critically, the "probabili ty" of a single event is intrinsically un- 
observable. No sense organ can discern that if we go to the north canyon, 
there is a .25 probability that today's hunt will be successful. Either it will or 
it won't;  that is all one can observe. As useful as a sense organ for detecting 
single-event probabilities might be, it is theoretically impossible to build 
one. No organism can evolve cognitive mechanisms designed to reason 
about,  or receive as input, information in a format that did not regularly 
exist. 

What w a s  available in the environment in which we evolved was the 
encountered frequencies of actual e v e n t s - f o r  example, that we were 

L~, Examining the nature of the adaptive problem is just as important  as examining the nature 
of  the information available for solving it. This is because selection will not shape decision rules 
so that they act solely on the basis of  what is most likely to be true, but rather on the basis of 
the weighted consequences  of acts given that something is held to be true. N e y m a n - P e a r s o n  
decision theory (signal detection theory),  for example,  is a normative statistical theory that 
allows one to combine frequency information with cost-benefi t  information (for an application 
to the cab problem, see Birnbaum, 1983). Should you walk under  a tree that might conceal a 
predator? Even if such trees have been predator-free 51 (or even 95) t imes out  of 100, an 
adaptive decision rule should,  under  many circumstances, cause you to avoid the tree - that is, 
to act as if the predator were there. The benefits of calories saved via a shortcut,  scaled by the 
probability that there is no predator in the tree, must  be weighed against the benefits of 
avoiding becoming catfood, scaled by the probability that there is a predator  in the tree. 
Because the costs and benefits of hits, misses, false alarms, and correct rejections are often 
unequal ,  decision rules that use frequency information may treat as true situations that are 
unlikely to be true (Tooby & Cosmides,  1990). There is no need to assume that such 
calculations are consciously accessible, and we take no position on whether  the end product  of 
this frequentist  process somet imes manifests  itself as a consciously experienced subjective 
degree of certainty. 
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successful 5 out of the last 20 times we hunted in the north canyon. Our 
hominid ancestors were immersed in a rich flow of observable frequencies 
that could be used to improve decision-making, given procedures that could 
take advantage of them. So if we have adaptations for inductive reasoning, 
they should take frequency information as input. 

Once frequency information has been picked up, why not convert it into a 
single-event probability? Why not store the encountered frequency- "5 out 
of the last 20 hunts in the north canyon were successful" - as a single-event 
probabil i ty-"there is a .25 chance that a hunt in the north canyon will be 
successful"? There are advantages to storing and operating on frequentist 
representations because they preserve important information that would be 
lost by conversion to a single-event probability. For example: 

(1) The number of events that the judgment was based on would be lost 
in conversion. When the n disappears, the index of reliability of the 
information disappears as well. 

(2) One is continuously encountering new information, and having to 
update one's database. Frequentist representations, which preserve the 
number and the categorization of events, can be easily updated with each 
new instance; single-event probabilities cannot. For example, if the next 
hunt in the north canyon fails, "5 out of 20" can easily be converted to "5 
out of 21". 

(3) Frequentist representations allow reference classes to be constructed 
after the fact, allowing one to reorganize one's database flexibly (e.g., 
Hintzman & Stern, 1978). This allows one to answer a larger array of 
questions. Assume you have hunted in the north canyon 100 times, and 5 
out of the last 20 hunts were successful. But suppose those last 20 times 
were in summer, and it is now winter. Given that season can modify game 
distribution, the reference class "hunts during winter one year ago" might 
be better than the reference class "most recent hunts". Or the criterion for 
"successful hunt" may need to be changed from "caught a small game 
animal" to "caught a large game animal", because many more individuals 
have joined your group and need to be fed. It is computationally trivial to 
reconstruct a reference class according to new criteria given frequentist 
representations. 

Once a frequency representation has been computed, it can serve as input 
to decision rules and planning mechanisms. When fed into an appropriate 
decision rule, a frequency representation can easily produce a subjective 
degree of confidence - that, for example, a hunt in the north canyon will be 
successful today. The fact that people routinely report experiencing subjec- 
tive degrees of confidence does not weaken the claim that the machinery 
that underlies them operates along frequentist principles. Given these 
considerations, we can place Gigerenzer's hypothesis that the mind is a good 
intuitive statistician of the frequentist school into an evolutionary frame- 
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work, and expand it as follows: during their evolution, humans regularly 
needed to make decisions whose success could be improved if the probabilis- 
tic nature of the world was taken into account. They had access to large 
amounts of probabilistic information, but primarily or perhaps solely in the 
form of encountered frequencies. This information constituted a rich 
resource available to be used to improve decision-making, given procedures 
that could take advantage of it. Consequently, they evolved mechanisms 
that took frequencies as input, maintained such information as frequentist 
representations, and used these frequentist representations as a database for 
effective inductive reasoning. 

A number of predictions follow from this hypothesis: 

(1) Inductive reasoning performance will differ depending on whether 
subjects are asked to judge a frequency or the probability of a single event. 

(2) Performance on frequentist versions of problems will be superior to 
non-frequentist versions. 

(3) The more subjects can be mobilized to form a frequentist representa- 
tion, the better performance will be. 

(4) (Strong version) Performance on frequentist problems will satisfy 
some of the constraints that a calculus of probability specifies, such as 
Bayes' rule. This would occur because some inductive reasoning mecha- 
nisms in our cognitive architecture embody aspects of a calculus of 
probability. 

We are not hypothesizing that every cognitive mechanism involving 
statistical induction necessarily operates on frequentist principles, only that 
at least one does, and that this makes frequentist principles an important 
feature of how humans intuitively engage the statistical dimension of the 
world. It is poss ib le-we think it l ikely- that  our cognitive architecture 
includes a constellation of specialized mechanisms whose designs embody 
non-frequentist principles, alongside or integrated with frequentist designs. 
Such mechanisms would be deployed when ancestrally valid cues signal the 
presence of problem-types appropriate to the principles they embody 
(Tooby & Cosmides, 1990). In short, in contrast to the standard view that 
the human cognitive architecture does not embody either a calculus of 
probability or effective statistical competences, we suggest that the human 
mind may contain a series of well-engineered competences capable of being 
activated under the right conditions, and that a frequentist competence is 
prominent among these. 

1.4. Do frequentist representations elicit better statistical reasoning? 

If people are capable of applying a calculus of probability to frequency 
representations, then why is the literature on judgment under uncertainty so 
littered with apparent errors in reasoning? 
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We should never be surprised to find "errors" in reasoning, even from an 
"optimally designed" algorithm. This is because it is theoretically impossible 
to build an "omniscient algorithm": an algorithm that can operate error-free 
no matter what the format of the information that is fed into it, and no 
matter what output it is required to produce. So-called "errors" can be 
produced by the most elegantly designed mechanism, and when they are, 
one can gain insight into how the mechanism represents information and 
what kind of output it was designed to produce. The existence of "errors" 
does not necessarily mean that the mechanisms involved embody a quick- 
and-dirty rule-of-thumb. 

For example, no computational mechanism can correctly process in- 
formation that it cannot "read";  information can be processed properly only 
if it is in a format that the mechanism can interpret. A calculator that is 
designed to correctly multiply numbers presented to it in the format of base 
10 will not be able to correctly multiply numbers presented to it in the 
format of base 2 - it will interpret input such as "10" as ten rather than as 
two and therefore produce the "wrong" output. 

More importantly, no computational mechanism can be expected to 
correctly produce an answer that it was not designed to produce. For 
example, choosing food and choosing a spouse both involve "preferences". 
One can even ask questions about these choices in the same linguistic 
format: "How much do you like your salad/boyfriend?" But a mechanism 
that is well designed for choosing nutritious food will not be able to choose 
the best spouse. Similarly, even though addition and finding a logarithm 
both involve numbers, a mechanism that is well designed for adding will not 
be able to find a logarithm. 

Suppose people do have reliably developing mechanisms that allow them 
to apply a calculus of probability, but that these mechanisms are "fre- 
quentist": they are designed to accept probabilistic information when it is in 
the form of a frequency, and to produce a frequency as their output. Let us 
then suppose that experimental psychologists present subjects with problems 
that ask for the "probability" of a single event, rather than a frequency, as 
output, and that present the information necessary to solve the problem in a 
format that is not obviously a frequency. Subjects' answers to such problems 
would not appear to have been generated by a calculus of probability, even 
though they have mechanisms designed to do just that. ~1 

~ In everyday discourse, the word "probability" has meanings other than "relative fre- 
quency", such as "weight of evidence". Many situations in real life that ask for the 
"probability" of a single event are really asking for a weight of evidence judgment: in a court of 
law, for example, judgments of "probable cause" and "guilt beyond a reasonable doubt" 
appear to be based on Baconian probabilities and weight of evidence, not on relative 
frequencies (e.g., Cohen, 1979, 1988). Cohen (1979) has argued that certain answers based on 
"representativeness" may be normatively correct on a Baconian view of probability. And 
Gigerenzer (personal communication) has suggested that when subjects are asked for the 
probability of a single event they may think they are being asked for a weight of evidence 
judgment and be answering accordingly. 
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One way to see if this is the case is to compare performance on tests that 
ask for the probability of a single event to similar tasks that ask for the 
answer as a frequency. "Errors" that are reliably elicited by the single-event 
task should disappear on the frequency task. 

That seems to be just what happens (for review, see Gigerenzer, 1991). 
For example, Klaus Fiedler (1988) showed that the "conjunction fallacy" 
virtually disappears when subjects are asked for frequencies rather than 
single-event probabilities (see Table 1). Whereas 70-80% of subjects 
commit the conjunction fallacy when asked for the probability of single 
events, 70-80% of subjects do not commit the conjunction fallacy when 
asked for relative frequencies (a finding for which there is also evidence in 
Tversky & Kahneman's (1983) original study). 

The same manipulation can also cause the "overconfidence bias" to 
disappear. "Overconfidence" is usually defined as a discrepancy between 
one's degree of belief (confidence) in a single event and the relative 
frequency with which events of that class occur. But such a discrepancy is 
not a violation of frequentist theories of probability. When one compares 
subjects" judged frequencies with actual frequencies, as Gigerenzer, Hof- 
frage, and Kleinbolting (1991) did, "overconfidence" disappears; subjects' 
judgments turn out to be quite accurate. According to their probabilistic 
mental model theory, one's confidence in a single answer is an estimate of 
the ecological validity of the cues used in providing that answer, not an 

Table 1 
Single-event and frequency versions of Fiedler's (1988) conjunction problems 

Single-event version Frequency version 

Linda is 31 years old, single, outspoken 
and very bright. She majored in 
philosophy. As a student, she was 
deeply concerned with issues of 
discrimination and social justice, and 
also participated in anti-nuclear 
demonstra t ions .  

Please rank order the following 
statements with respect to their 
probability: 

Linda is a bank teller a 

Linda is a bank teller and active in the 
feminist  movemen t  

Linda is 31 years old, single, outspoken 
and very bright. She majored in 
philosophy. As a student, she was 
deeply concerned with issues of 
discrimination and social justice, and 
also participated in anti-nuclear 
demonstrat ions.  To how many out of 100 
people who are like Linda do the 
following statements apply'? 

Linda is a bank teller 

Linda is a bank teller and active in the 
feminist movement  

a For both versions, several other statements had to be judged as well (e.g., "Linda  is a 
psychiatric social worker") ,  but the crucial comparison is between the two statements listed 
above. For any two categories, A and B, instances of A should be judged more frequent than 
instances of A&B.  In the above case, there are more bank tellers than there are bank tellers 
who are feminists,  because the category "bank tellers" includes both feminists and non- 
feminists.  
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estimate of the long-run relative frequency of correct answers. Indeed, by 
assuming that people accurately encode and store frequency information 
from their environment, Gigerenzer et al.'s theory allowed them to predic- 
tably elicit well-calibrated performance, overestimation, or underestimation, 
depending on whether the questions asked were a random sample from the 
subjects' reference class, selected to be difficult, or selected to be easy. 

This result fits well with the literature on automatic frequency encoding. 
One would expect an organism that relies on frequency information in 
making judgments under uncertainty to be constantly picking up such 
information from the environment in a way that does not interfere with the 
organism's ongoing activities. Hasher, Zacks, and colleagues have found 
evidence for just such a mechanism. People encode frequency information 
very accurately, and they appear to do so automatically. Their performance 
on frequency discrimination tasks is unaffected by the kinds of factors that 
affect more "effortful" processes, such as free recall. For example, fre- 
quency performance is not hindered by competing task demands, it is not 
affected by the amount or appropriateness of practice, and it is not affected 
by the accuracy of the subject's test expectations. Moreover, there are no 
stable individual differences in performance, and second-graders do just as 
well as adults: just what one would expect of a reliably developing, 
automatic mechanism (See Alba, Chromiak, Hasher, & Attig, 1980; Attig & 
Hasher, 1980; Hasher & Chromiak, 1977; Hasher & Zacks, 1979; Hintzman 
& Stern, 1978; Zacks, Hasher, & Sanft, 1982). 

There is even preliminary evidence to suggest that asking for frequencies 
rather than single-event probabilities causes base rate neglect to disappear 
and subjects to act like good bayesians. In Kahneman and Tversky's (1973) 
"Tom W." problem, subjects were given a personality description of a 
graduate student, "Tom W.", and asked to judge which field of study he was 
most likely to be in - that is, the probability of a single event. Their subjects 
ignored base rates, and appeared to assign probabilities based on the 
similarity of Tom W.'s personality to their stereotypes of the various fields 
(performance which is consistent both with a Baconian and a "weight of 
evidence" interpretation of probability; see footnote 11). A frequentist 
version of an analogous problem was administered by McCauley and Stitt 
(1978) to subjects who were untutored in statistics. Instead of asking for the 
probability that an individual with certain personality traits was a member of 
a category, as in the Tom W. problem, they asked their subjects to estimate 
the frequencies of various personality traits and categories. For example, 
subjects were asked to estimate "the percent of Germans who are efficient" 
(p(trait[German)), "the percent of all the world's people who are efficient" 
(p(trait)), "the percent of efficient people who are German" 
(p(German]trait)), and "the percent of the world's people who are Ger- 
man" (p(German)). McCauley and Stitt, who were interested in stereotyp- 
ing, wanted to see whether subjects' judgments of p(traitlGerman) followed 
a bayesian logic. They found that base rate neglect disappeared: the judged 
inverse probabili ty-p(trait lGerman ) -  was correlated both with the base 
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rate (p(trait)) and with the likelihood (p(Germanltrait)),  even though 
judged base rate and judged likelihood were not correlated with each other. 
This means that base rates were exercising an effect independent of 
likelihood. In a stronger test, McCauley and Stitt used Bayes' theorem to 
calculate p(traitlGerman ) from their subjects' estimates of p(trait),  
p(Germanltrai t  ) and p(German).  These calculated values were highly 
correlated with the subjects' directly judged estimates of p(traitlGerman ) 
(r = .91). It is difficult to see how this striking internal consistency among 
estimates could be achieved unless their subjects were somehow applying a 
bayesian logic of statistical prediction. 

The mounting evidence that people are good "intuitive statisticians" when 
they arc given frequencies as input and asked for frequencies as output, 
suggests that the issue of whether our inductive reasoning mechanisms 
embody a calculus of probability should be reopened. To this end, we 
conducted a particularly strong test of Gigerenzer's hypothesis that our 
inductive reasoning mechanisms were designed to operate on and to output 
frequency representations (henceforth called the "frequentist hypothesis"). 
We conducted a series of experiments to see whether casting a single-event 
probability problem in frequentist terms would elicit bayesian reasoning. If 
it does, then the conclusion that our inductive reasoning mechanisms do not 
embody a calculus of probability - that they consist of nothing more than a 
few quick-and-dirty rules-of-thumb- will have to be re-examined. 

1.5. The medical diagnosis problem 

If a test to detect a disease whose prevalence is 1/1000 has a false positive 
rate of 5%, what is the chance that a person found to have a positive 
result actually has the disease, assuming that you know nothing about the 
person's symptoms or signs? % 

The above reasoning problem is called the medical diagnosis problem, 
and it was designed to assess whether people engage in bayesian reasoning. 
It is famous in the literature on judgment under uncertainty for eliciting 
base rate neglect even from technically educated subjects. Casscells et al. 
(1978) asked a group of faculty, staff and fourth-year students at Harvard 
Medical School to solve this problem. Only 18% of them answered "2%" ,  
which is the correct bayesian answer under most interpretations of the 
problem. ]~ Forty-five percent of them answered "95%".  Because "95%" is 
inconsistent with a population base rate for the disease of 1 in 1000, 
Casscells et al. concluded that their subjects were violating Bayes' theorem 

'~" "2%'" is the correct answer only if one assumes that the true positive rate is 100% (this 
information was not provided in the original problem), that the population base rate is the 
appropriate  prior probability, and that the individual tested was randomly drawn from the 
populat ion.  If the subject believes that any of these assumptions are false, then, according to 
Bayes '  theorem,  other  answers would be correct. See Experiments  5 and 6 below. 
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by ignoring the base rate. The usual explanation for base rate neglect is the 
operation of a representativeness heuristic, but this cannot account for base 
rate neglect in the medical diagnosis problem (Tversky & Kahneman, 1982, 
p. 154). Accordingly, Tversky and Kahneman use the results of Casscells et 
al.'s study to make the point that judgmental biases are widespread and 
difficult to eradicate: 

Evidently, even highly educated respondents often fail to appreciate the significance of 
outcome base rate in relatively simple formal problems . . .  The strictures of Meehl and 
Rosen (1955) regarding the failure to appreciate base rates are not limited to clinical 
psychologists; they apply to physicians and other people as well. (Tversky & Kahneman, 
1982. p. 154) 

Physicians are taught statistics so that they will know how to evaluate 
diagnostic test results of the kind presented in the medical diagnosis 
problem. If even they fail to use a calculus of probability, then it seems 
compelling to argue that the human mind does not embody one. 

We wanted to stand this experimental logic on its head. We chose the 
medical diagnosis problem for our experiments precisely because it had 
elicited such low levels of correct bayesian reasoning e v e n  from statistically 
educated subjects. We wanted to see what would happen if the same 
problem were posed in frequentist t e rms- tha t  is, if the problem in- 
formation was presented as frequencies and the answer was asked for as a 
frequency. Could a frequentist version of the medical diagnosis problem 
elicit correct bayesian reasoning "even" from undergraduates, most of 
whom have had little or no training in statistics? That would be strong 
evidence for the hypothesis that we do have mechanisms that embody some 
aspects of a calculus of probability, but that frequency representations are 
their natural format. 

The remainder of this article is divided into three parts. In Part I we show 
that very high levels of bayesian reasoning are elicited by frequentist 
versions of the medical diagnosis problem. In Part II, we show that simply 
clarifying non-frequentist versions of the problem does n o t  produce these 
high levels of bayesian reasoning. In Part III, we successively eliminate 
various elements of the frequentist problem to determine which are critical 
for producing high levels of bayesian reasoning, and show that the crucial 
elements are (1) asking for the answer as a frequency rather than as a 
single-event probability, and (2) presenting the problem information as 
frequencies. 

PART I. CAN FREQUENTIST VERSIONS OF THE MEDICAL 
DIAGNOSIS PROBLEM ELICIT CORRECT BAYESIAN REASONING? 

In Part I, we describe four experiments that were designed to test whether 
frequentist versions of the medical diagnosis problem could elicit correct 
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bayesian reasoning from subjects. The frequentist problems in this section 
have all the characteristics that a good frequentist problem should have: (1) 
they present the problem information as frequencies; (2) they ask for the 
answer as a frequency rather than as a single-event probability; (3) they 
specify the true positive rate; (4) they define the notion of a false positive 
rate rather than assuming that subjects already know what this term means; 
(5) they make the random sampling assumption explicit; and (6) they 
specify the size of the random sample, thus giving the subject a concrete 
reference class to think in terms of. If we have well-designed mechanisms 
for bayesian reasoning that operate on and produce frequency 
representations-and can do this using verbal input - then  these problems 
should elicit substantial levels of bayesian performance. 

The subjects and procedure were identical for all of the experiments. 
There were 25 subjects in each condition, all of them students at Stanford 
University. Their average age was 19.6 years, and they were paid volunteers 
recruited by advertisement. Each subject was given a booklet that consisted 
of an instruction page followed by one medical diagnosis problem. The 
instructions were minimal: they merely asked the subject to read the 
problem carefully before answering any questions. Although most subjects 
finished in less than 10 rain, they were allowed to take all the time they 
needed. 

EXPERIMENT 1 

The purpose of Experiment 1 was (1) to see if we could replicate Casscells 
et al.'s results on the original version of the medical diagnosis problem, and 
(2) to see whether we could create a frequentist version of the problem that 
would elicit a higher percentage of bayesian responses than that elicited by 
the original version. 

2. Materials 

Experiment 1 had three conditions. 

Cond i t i o n  1 

Condition 1 was an exact replication of the problem that Casscells et al. 
administered to physicians and fourth-year medical students at Harvard 
Medical School teaching hospitals: 

If a test to detect a disease whose prevalence is 1/1000 has a false positive 
rate of 5%, what is the chance that a person found to have a positive 
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result actually has the disease, assuming that you known nothing about 
the person's symptoms or signs? % 

Condi t ion  2 

The problem tested in Condition 2 was as follows: 

1 out of every 1000 Americans has disease X. A test has been 
developed to detect when a person has disease X. Every time the test is 
given to a person who has the disease, the test comes out positive (i.e., 
the "true positive" rate is 100%). But sometimes the test also comes out 
positive when it is given to a person who is completely healthy. Specifical- 
ly, out of every 1000 people who are perfectly healthy, 50 of them test 
positive for the disease (i.e., the "false positive" rate is 5%). 

Imagine that we have assembled a random sample of 1000 Americans. 
They were selected by a lottery. Those who conducted the lottery had no 
information about the health status of any of these people. 
Given the information above: 
on average, 
How many people who test positive for the disease will actually have the 
disease? out of 

Condition 2 differs from Condition 1 -  Casscells et ai.'s original vers ion-  
in several respects: (1) it gives the true positive rate, which Casscells et al. 
had omitted entirely; (2) the base rate and false positive rate are given as 
frequencies, as well as percentages; (3) the text defines what the term "false 
positive" means; (4) it specifies that the question refers to a random sample 
(it is inappropriate to use base rates as a prior probability if a sample was 
not randomly drawn); (5) it specifies the size of the random sample ("1000 
Americans"),  giving a concrete reference class to think in terms of; and (6) 
it asks for the answer as a frequency ("How many people who . . . " ) ,  rather 
than as a single-event probability ("What  is the chance that a person . . ."). 

Condi t ion 3 

The first and second paragraphs of Condition 3 were identical to those for 
Condition 2; the remainder of the problem read as follows: 

Given the information above: 
on average, 

(1) How many of these 1000 people will have the disease? _ _  
(2) How many of the 1000 people will have the disease AND test positive 

for it? 
(3) How many of the 1000 people will be healthy AND test positive for 

the disease? 
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(4) How many of the 1000 people will test positive for the disease, 
whether they have the disease or not? _ _  

(5) How many people who test positive for the disease will actually have 
the disease? out of 

Questions 1-4 were asked so that we could ascertain whether subjects 
understood the information given in the problem. In addition, we wanted to 
see whether answering these questions would boost performance. Answer- 
ing these probe questions correctly would make all the information neces- 
sary for solving the problem explicit in the subject's mind. If the human 
mind is equipped to do bayesian reasoning, but subjects sometimes fail to 
correctly extract the necessary information from the problem, then this 
problem should boost performance. By the same token, a small number of 
"2%" responses on this problem would be strong evidence that the mind is 
not naturally equipped to do bayesian reasoning. 

3. Results 

The results are pictured in Figs. 1 and 2. Fig. 1 shows the results for all 
subjects; Fig. 2 shows the frequency with which subjects' judgments fell into 
the three categories that were both most common and of greatest theoretical 
interest: "2%",  the correct bayesian answer on most interpretations of the 
problem; "1/1000", which reflects base rate conservatism (here, taking into 
account nothing but the base rate); and "95%", which was the modal 
response in the Casscells et al. study and has been taken to reflect base rate 
neglect. (Eighty-four percent of subjects' responses fell into one of these 
three categories.) Inspection of Figs. 1 and 2 shows that the pattern of 
results obtained for the original, non-frequentist version of the problem in 
Condition 1 literally reversed itself in the two frequentist versions tested in 
Conditions 2 and 3. The two frequentist versions elicited a preponderance of 
correct bayesian answers, and caused base rate neglect to vanish. More 
specifically: 

3.1. Did Casscells et al.'s original study replicate on Stanford students ? 

Condition 1 replicated the results of Casscells et al. very nicely: 12% of 
Stanford students, as compared to 18% of Cassceils et al.'s medical school 
students and staff, gave the bayesian answer of "2%". In addition, "95%" 
was the modal answer for Stanford students, just as it was for Casscells et 
ai.'s subjects: 56% of Stanford students versus 45% of Casscells et al.'s 
subjects gave this response. Another 12% of our subjects were base rate 
"conservatives": rather than neglecting the base rate, these subjects paid 
attention to nothing but the base rate, answering "0.1%" (i.e., 1/1000). 
(We have no figures for comparison from Casscells et al., who reported 
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Fig. 1. Results  of Exper iment  1. The y-axis represents how many subjects gave a particular 
answer;  the x-axis represents which answer, from "0%"  to "100% '~, was given. 

percents only for those subjects who responded "2%" or "95%", which 
accounted for only 63% of the subjects they tested.) 

3.2. Did the frequentist versions of the problem boost performance ? 

There is a striking difference between the pattern of results obtained for 
Condition 1 and that obtained for Conditions 2 and 3: the pattern of results 
for the non-frequentist version of the problem reverses itself for the two 



L. Cosmides. J. Tooby / Cognition 58 (1996) 1-73 27 

100 ] [] Bayesian 

/ [] Base rate only 
[] Base rate "neglect" 

75 

4 ~ 1  0 
0 I I i 

"2%" "1/1000" "95%" "2%" "1/1000" "95%" "2%" "1/1000" "95%" 

Original  version Frequentist version Frequentist version with 
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information and probe questions 

Fig. 2. Percentage of subjects who answered either "2%",  "1/1000", or "95%" in Experiment 
1; "2%" is the correct bayesian answer under most interpretations of the problem. The 
distribution of responses for the two frequentist problems is almost the reverse of the 
distribution for the original version, which is non-frequentist. 

frequentist  versions. The modal response for the two frequentist versions of 
the problem was " 2 % " - t h e  correct bayesian answer. The correct bayesian 
answer was elicited from 56% of subjects in condition 2, and 76% in 
condition 3. This is, of course, a significantly higher percentage of bayesian 
answers than the 12% elicited in the non-frequentist condition 1 (56% vs. 
12%: Z = 3.28, phi = .46, p = .0005). 

The second most common response for the frequentist versions was 
"0 . 1%" ,  which was given by 28% of subjects in condition 2 and 8% in 
Condition 3. Far from neglecting the base rate, these subjects were 
weighting it too heav i ly -  they were base rate conservatives. 

Base rate neglect virtually disappeared in the frequentist versions: only 
one subject in Condition 2, and no subjects in Condition 3 answered 
"95%" ,  which was the modal response for the non-frequentist version tested 
both in Condition 1 and by Casscells et al. Indeed, only one subject in each 
of the frequentist conditions gave an answer greater than "20%".  

The extent to which base rate neglect vanished in the frequentist versions 
of the problem can be seen by considering how many subjects gave answers 
of " 2 % "  or l o w e r  in the three conditions. Rather than neglecting base rates, 
such subjects are either giving the correct bayesian answer or weighting base 
rates too heavily. In the non-frequentist Condition 1 this figure was only 
32%, but in the frequentist Conditions 2 and 3 it leapt to 88% and 84%, 
respectively. 

The two frequentist versions of the problem, Conditions 2 and 3, differed 
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in that Condition 3 asked a series of questions about the information 
presented in the problem. Asking these questions increased the number of 
bayesian answers by 20 percentage points (76% vs. 56%: Z = 1.49, phi = 
.21, p =  .07), and decreased the number of "1/1000" answers by 20 
percentage points (28% vs. 8%: Z = 1.84, phi = .26, p = .03). Thus, asking 
these questions seemed to clarify the problem for subjects. In Condition 3, 
all of the 21 subjects who answered either "2%" or "1/1000" answered the 
probe questions in ways indicating that they understood the information 
presented in the problem. For two of the four subjects who gave a different 
answer, the probe questions and the answer given indicated correct bayesian 
reasoning on the assumption that the prevalence of the disease in the 
population was other than 1/1000 (one subject answered as if it were 
1/100, the other as if it were 5/1000). 

The fact that all of the base rate conservatives in Condition 3 seemed to 
understand the information presented in the problem suggests to us that 
they may have misread the last question as a conjunction rather than as a 
conditional probability. If one were not careful, it would be easy to mistake 
"How many people who test positive for the disease will actually have the 
disease?" (a conditional probability) for "How many people test positive for 
the disease and actually have the disease?" (a conjunction). One out of 1000 
is, of course, the correct answer to the latter question. 

4. Discussion for Experiment 1 

The results of Experiment 1 show that a simple rewording of the medical 
diagnosis problem can elicit correct bayesian reasoning from the majority of 
subjects and eliminate base rate neglect. But what accounts for this dramatic 
difference in performance? The frequentist versions of the problem in 
Conditions 2 and 3 differ from the original version tested in Condition 1 in 
six ways, only three of which are relevant to the frequentist hypothesis. 
Later, in Parts II and III, we will independently manipulate these variables 
to see which ones account for this effect. 

In the remainder of this article we will want, in certain cases, to compare 
performance across experiments. We will therefore refer to results by their 
experiment and condition numbers. Thus, El -C3 will refer to Experiment 
1, Condition 3; E2-C2 will refer to Experiment 2, Condition 2, and so on. 
For easy reference, Table 2 provides a complete list of all the experiments 
and conditions reported in this article. 

EXPERIMENTS 2-4 

Experiments 2-4 were designed first to see whether the startling results of 
Experiment 1 would replicate, and second to see how high we could push 
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Table 2 
List of experiments 
Part I 

Experiment 1 
Condition 1 (EI-C1) 
Condition 2 (El -C2)  
Condition 3 (El -C3)  

Experiment 2 
Condition 1 (E2-C1) 
Condition 2 (E2-C2) 

Experiment 3 
Condition 1 (E3-CI)  

Condition 2 (E3-C2) 

Experiment 4 
Condition 1 (E4-C1) 
Condition 2 (E4-C2) 

Non-frequentist. Original version of Casscells et al. problem 
Frequentist version with redundant percent information 
Frequentist version with redundant percent information and probe 
questions 

Frequentist problem 
Frequentist problem with probe questions 

Frequentist version with redundant percent information (replica- 
tion of El -C2)  
Frequentist problem (replication of E2-C1) 

Active pictorial (frequentist) 
Passive pictorial (frequentist) 

Part II 

Experiment 5 (E5) 

Experiment 6 
Condition 1 (E6-C1) 

Condition 2 (E6-C2) 

Non-frequentist. Clarified version of original Casscells et al. 
problem. True positive rate specified; meaning of false positive 
rate clarified 

Non-frequentist. Like E5, but with random sampling assumption 
made explicit (population size not explicitly enumerated) 
Non-frequentist. Like original Casscells et al. version tested in 
El-C1,  but with a 40%, rather than a 5%, false positive rate 

Part Ill  

Experiment 7 
Condition 1 (E7-CI)  

Condition 2 (E7-C2) 

Condition 3 (E7-C3) 

Experiment 8 
Condition 1 (E8-C1) 

Condition 2 (E8-C2) 

Like E5, but answer asked for as a frequency (percent infor- 
mation; random sampling not mentioned) 
Like E2-C1, but answer asked for as a single-event probability 
(frequency information; random sampling explicit; explicitly enum- 
erated population) 
Like E6-C1, but answer asked for as a frequency (percent 
information; random sampling explicit; population size not ex- 
plicitly enumerated) 

Like E7-C3, but with an explicitly enumerated population (per- 
cent information; random sampling explicit; frequency answer) 
Like E2-C1, but without an explicitly enumerated population 

bayesian performance. Is 56% correct as high as performance can get 
without asking the subject "leading questions"? Does 76% correct represent 
a ceiling for a problem that does ask leading questions- that is, ones that 
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make the information necessary to solve the problem explicit in the subject's 
mind? 

EXPERIMENT 2 

Experiment 2 allowed us to address two questions: (1) was the high level 
of bayesian performance elicited by the frequentist problems in Experiment 
1 a fluke? and (2) can correct bayesian performance be pushed even higher 
by presenting information only as frequencies? 

In the frequentist problems of Experiment 1, the true positive rate and 
the false positive rate were presented in two ways: as frequencies and as 
percents. Although percents are, technically, frequencies normalized on a 
population of 100, this information is implicit in the definition, not explicit 
in the notation. It is easy to forget that percents are implicit frequencies for 
two reasons: (1) by using school-taught algorithms that allow one to plug 
percents directly into formulas, one can solve problems by symbol manipula- 
tion in a way that bypasses the formation of a frequentist representation of 
the problem; and (2) in natural language, percents are sometimes used to 
express degrees of effort or confidence, rather than frequencies (e.g., "The 
football team was playing at only 70%"; "I'm 90% sure the party is today"). 
(See Part III below for more discussion of this point.) 

If there are inductive reasoning mechanisms that are designed to process 
frequency information, then the more explicitly frequentist the representa- 
tion, the better performance should be. It occurred to us that presenting the 
information in a percent format might actually confuse some subjects and 
impair performance. We tested this hypothesis in Experiment 2. If such 
redundant information impairs performance, this should be most evident in 
problems that do not ask "leading" probe questions. This is because the 
clarity achieved by asking probe questions may be sufficient to override a 
negative effect of percent format information. 

5. Materials 

Experiment 2 had two conditions. 

Condition I (E2-C1) 

Condition 1 was virtually identical to the frequentist problem tested in 
Experiment 1, Condition 2 (El-C2) .  The only difference between these two 
problems was that the parenthetical expression that gave the redundant 
percentage information in Experiment 1 -  "(i.e., the 'true positive' rate is 
100%)" and "(i.e., the 'false positive' rate is 5 % ) " - w e r e  deleted from the 
text of the problem tested in Experiment 2. No probe questions were asked 
in this condition. 
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Condition 2 (E2-C2) 

Condition 2 was virtually identical to the frequentist problem tested in 
Experiment 1, Condition 3 ( E l - C 3 ) - t h e  problem that asked the four 
probe questions. Again, the only difference between these two problems 
was that the parenthetical expressions that gave the redundant percent 
information in Experiment 1 were deleted from the text of the problem 
tested in Experiment 2. 

6. Results of Experiment 2 

6.1. Did the high level of bayesian performance found in Experiment 1 
replicate in Experiment 27 

Yes. The correct bayesian response of "2%" was elicited from 72% of 
subjects in both Condition 1 and Condition 2 of Experiment 2. This high 
level of bayesian performance was elicited by Condition 1 in spite of the fact 
that it asked no "leading" probe questions. 

6.2. Does redundant percentage information depress bayesian performance? 

This question can be answered by comparing performance on E2-C1 with 
performance on El-C2.  Neither of these problems ask probe questions. The 
only difference between them is that E2-C1 presents the information only 
as frequencies, whereas El -C2 presents it as both a frequency and a 
percent. The level of bayesian performance was 16 percentage points higher 
when the information was presented only as a frequency- 72% correct for 
E2-C1 versus 56% correct for El -C2 (Z = 1.18, phi = .17, p = .12). 

Our sample size is not large enough for a 16 percentage point difference 
to show up as significant at the conventional .05 level. Hence, to see if this 
effect is real, we attempted to replicate it in Experiment 3. 

6.3. Does redundant percentage information depress bayesian performance 
when probe questions are asked? 

To answer this question we need to compare the results of E2-C2 to those 
of El-C3.  Both of these problems ask the four probe questions, but the 
former presents the information only as frequencies, whereas the latter 
presents it redundantly, as both a frequency and a percent. E2-C2 elicited 
the correct bayesian answer, "2%", from 72% of subjects tested. This is 
virtually identical to the 76% correct found for the matching problem tested 
in El-C3.  This suggests that the clarity achieved by having subjects answer 
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probe question is sufficient to override any negative effect of presenting 
information in a percent format. 

EXPERIMENT 3 

We were so intrigued by the fact that bayesian performance was better 
when the information was presented only as a frequency that we wanted to 
see if this effect would replicate. 

7. Materials 

Experiment 3 had two conditions. 

Condition 1 (E3-C1) 

Condition 1 was identical to the frequentist problem tested in El -C2.  In 
other words, the false positive rate and true positive rate were each 
presented redundantly, both as a frequency and as a percent. No probe 
questions were asked. 

Condition 2 (E3-C2) 

Condition 2 was identical to the frequentist problem tested in E2-C1. In 
other words, the false positive rate and true positive rate were each 
presented only as a frequency. No probe questions were asked. 

8. Results 

Eighty percent of subjects in the frequency only condition and 64% of 
subjects in the frequency and percent condition gave the correct bayesian 
answer. Thus, the 16 percentage point difference found previously between 
these conditions (E2-C1 vs. E l -C2)  replicated exactly in Experiment 3 
(Z = 1.25, phi = .18, p = .1). This supports our earlier hypothesis that the 16 
percentage point difference is real, but too small an effect to show up as 
significant in a between group design with n = 25 per group. Indeed, when 
we increase our sample size to n = 50 per group by combining the results of 
the two frequency only conditions (E2-C1 and E3-C1) on the one hand, 
and the two frequency and percent conditions (E l -C2  and E3-C2) on the 
other, one can see that providing the redundant percentage information 
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does significantly decrease performance (frequency only: 76%; frequency 
and percent: 60%; Z = 1.71, phi= .17, p = .04). 

9. Discussion for Experiments 2 and 3 

First, Experiments 2 and 3 provide four new independent replications of 
the main effect found in Experiment 1, namely, that wording the medical 
diagnosis problem in frequentist terms elicits correct bayesian performance 
from the majority of subjects tested. Second, by presenting the problem 
information as frequencies only, we were able to push bayesian performance 
up to 72% and 80%, even in the absence of  any "leading" probe questions. 
Indeed, presenting the information only as frequencies elicited bayesian 
performance that was just as high as that elicited by problems that do ask 
probe questions (76% and 72%, in E l -C3  and E2-C2, respectively). This 
suggests that purely frequentist representations make the problem so clear 
that probe questions are superfluous. Third, when it is presented in the form 
of a percent, redundant problem information actually seems to impair 
performance. (We will see additional evidence of the negative effect of 
presenting problem information as a percent in Part III.) Fourth, the 
presence of probe questions that make the subject explicitly represent the 
information necessary to solve the problem seems to be sufficient to 
override the negative effect of redundant percent information. 

Thus, even in the absence of any probe questions, 76% of subjects gave 
the correct bayesian answer when presented with a purely frequentist 
version of the medical diagnosis problem (E2-C1, E3-C2, n = 50). This is 
dramatically better performance than the 12% elicited by the original 
Casscells et al. problem tested in Experiment 1; the effect size, phi, for this 
comparison is 0.61 (76% vs. 12%: Z = 5.25, p = .0000001). 

EXPERIMENT 4 

Can bayesian performance be pushed even higher than the average of 
76% correct found for the pure frequentist problems tested in Experiments 
2 and 3, or does 76% represent some sort of ceiling? The assumption we 
started out with was that there would be inductive reasoning mechanisms 
that represent information as frequencies because in our natural environ- 
ment that is what we would have been encountering: a series of real, 
discrete, countable events. If true, then the highest levels of bayesian 
performance should be elicited when subjects are required to represent the 
information in the problem as numbers of discrete, countable individuals. 
This is what we tried to do in Experiment 4. 
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10. Materials 

Experiment 4 had two conditions. 

Condition 1 (E4-C1)  

Condition 1 was our "act ive" pictorial condition; in this condition we 
forced our subjects to actively construct a concrete, visual frequentist 
representation of the information in the problem. The text of condition 1 
read as follows: 

1 out of every 100 Americans has disease X. A test has been developed 
to detect when a person has disease X. Every time the test is given to a 
person who has the disease, the test comes out positive. But sometimes 
the test also comes out positive when it is given to a person who is 
completely healthy. Specifically, out of every 100 people who are perfectly 
healthy, 5 of them test positive for the disease. 

Imagine that we have assembled a random sample of 100 Americans. 
They were selected by a lottery. Those who conducted the lottery had no 
information about the health status of any of these people. The 100 
squares pictured below represent this random sample of 100 Americans. 
Each square represents one person. 

Using these squares, we would like you to depict the information given 
above. To indicate that a person actually has the disease, circle the square 
representing that person. To indicate that a person has tested positive for 
the disease, fill in the square representing that person. 
Given the information above: 
on average, 

(1) Circle the number of people who will have the disease. 
(2) Fill in squares to represent the people who will test positive for the 

disease. 
(3) How many people who test positive for the disease will actually have 

the disease? out of 

Following the text of the problem on the same page were line drawings of 
100 squares, arranged as 10 rows and 10 columns. (For this problem, we 
used a base rate of 1/100 rather than 1/1000, simply because we could not 
fit 1000 squares on one sheet of paper.) Thus the correct bayesian response 
for this problem is either 1 out of 6 or 1 out of 5, depending on whether the 
subject estimates 5% of 9 9 - w h i c h  is 4 . 9 5 - t o  be 5 or 4. Either is 
defensible - 5 if one is rounding by standard methods, and 4 if one decides 
there is no such thing as .95 of a person, or rounds by truncation of the 
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decimal places, or loosely estimates without computing, noting that 5% of 
99 is less than 5 but not by much. 

It should now be clear why we call this an "active" pictorial condition: the 
subject is forced to actively construct a concrete, visual frequentist repre- 
sentation of the information in the problem. To correctly solve the problem, 
the subject should circle one person to represent the one out of 100 who has 
the disease. The square representing this person should then be filled in, 
because the problem states that everyone who has the disease tests positive 
for it. Then,  either four or five of the other squares should be filled in, to 
represent the 5% of healthy people who test positive. Once one has done 
this, solving the problem is trivial, and requires no formalisms whatsoever: 
to answer the question "How many people who test positive for the disease 
will actually have the disease?" one simply counts up the number of squares 
that are circled and filled in - 1 - and the number of squares that are filled 
in - either 5 + 1 or 4 + 1. The answer, then, is either 1 out of 6 or 1 out of 5. 

Condition 2 (E4-C2)  

Condition 2 was our "passive" pictorial condition. Here,  we did not 
require that the subject actively construct a frequentist representation. But 
we did represent the information pictorially as well as verbally. There was 
nothing, however, to prevent the subject from ignoring the pictorial 
information. The text of the passive pictorial condition read as follows: 

1 out of every 100 Americans has disease X. A test has been developed 
to detect when a person has disease X. Every time the test is given to a 
person who has the disease, the test comes out positive. But sometimes 
the test also comes out positive when it is given to a person who is 
completely healthy. Specifically, out of every 100 people who are perfectly 
healthy, 5 of them test positive for the disease. 

We have represented this information below pictorially. The 100 
squares represent a random sample of 100 Americans. Each square 
represents one person. If a person actually has the disease, we circled the 
square representing that person. If a person tested positive for the 
disease, we filled in the square representing that person. 
Given this information: 
on average, 
How many people who test positive for the disease will actually have the 
disease? out of 

An array of 100 line drawings of squares like the one described for the 
active pictorial condition followed the text. One of the squares was circled 
and filled in; five of the other squares were filled in. These circled and filled 
in squares were scattered throughout the array. 
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11. Results 

The "active" pictorial condition- the condition in which we forced our 
subjects to actively construct a frequentist representation of the information 
in the problem - elicited the correct bayesian response from 92% of subjects 
tested. ~3 And although the remaining two subjects answered "1 out of 100", 
they had filled in and circled the boxes correctly. This suggests that they 
were reasoning correctly but misread the final question as a conjunction 
rather than as a conditional probability - an easy error to make, as discussed 
above. We suspect that this condition represents a ceiling on bayesian 
performance! 

The passive pictorial condition elicited the correct bayesian answer from 
76% of subjects tested. This is the same level of performance elicited by the 
two frequentist problems that had no probe questions (E2-C1 and E3-C2 
averaged to 76%). Thus there was a 16 percentage point difference between 
the active and passive pictorial problems, as well as between the active 
pictorial problem and the two other frequentist problems. Naturally, a real 
16 point difference is too small to count as significant given a comparison of 
two groups of size n = 25 (although the effect size, phi, for this comparison 
is .22). But when we increase the power of the test by comparing the results 
of the active pictorial problem (92%, n = 25) to those of the passive one 
plus the other two comparable frequentist problems (57/75 = 76%, n = 75), 
the difference is significant (Z = 1.73, phi = .17, p = .04). 

The data on rounding from the active pictorial condition, the "frequency 
only" probe question condition (E2-C2), and the "frequency and percent" 
probe question condition (El-C3) provide indirect evidence that there are 
inductive reasoning mechanisms that represent probabilities as frequencies 
of discrete, countable entities. For these three problems, subjects must state 
what they consider 5% of 99 or of 999 to be. In computing this figure, some 
subjects rounded by truncation whereas others simply rounded up. We 
suggested earlier that rounding by truncation is reasonable if one believes 
that it is not sensible to talk about .95 of a person. If frequentist 
representations encourage one to represent the problem in terms of discrete 

~3 As is the usual practice in the literature, this figure includes two subjects who seem to have 
forgotten that the person with the disease will test positive for it; that is, for these two subjects, 
the "5" in "1 out of 5" reflects only people who are healthy and test positive. We doubt that 
these two subjects actually believe that diseased people do not test positive, first, because it 
would be exceedingly strange to believe that a test designed to detect the presence of a disease 
would never yield a positive result for a person who has that disease, and second, because no 
subjects in the other two conditions that included probe questions ( E l - C 3 ,  E2-C2)  held this 
belief. If one wanted to adopt a stricter scoring procedure, however, the total would be 84% 
rather than 92%. We prefer the "final answer only" scoring criterion because (1) that is the 
standard dependent  measure in the heuristics and biases literature (i.e., points are neither given 
nor subtracted depending on the subject's reasoning p roces s -wh ich  the experimenter rarely 
knows), and (2) it allows us to directly compare the results of our probe question conditions to 
those conditions that lack probe questions. 
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individuals, then we might expect a more pronounced tendency to round by 
truncation than for percent representations, which may encourage one to 
think in terms of continuous distributions. ~4 This did, in fact, seem to 
happen: in E1-C3, the "frequency and percentage" probe question con- 
dition, only one subject rounded by truncation, as opposed to nine subjects 
in each of the "frequency only" probe question conditions (36% vs. 4% 
(n = 25): Z = 2.83, phi = .40, p = .0023). We have already seen that present- 
ing problem information as percents can depress bayesian performance 
(more evidence on this point will be presented in Part III). This, together 
with the data on rounding by truncation, supports not only the frequentist 
hypothesis, but also a related claim by Johnson-Laird (1983): that logical 
problems are easier to solve using representations of discrete, countable 
individuals than using representations that map finite sets of individuals into 
infinite sets of points, such as Venn diagrams or Euler circles (see General 
Discussion, below). 

12. Discussion for Experiment 4 

The passive pictorial condition (E4-C2) elicited the correct bayesian 
response from 76% of subjects tested, which is the same level of per- 
formance as that found for frequentist versions of the problem that do not 
include a pictorial depiction of the problem information. We assume that 
this is because the mere presence of the pictorial information does not mean 
that subjects will use it. But when subjects are required to represent the 
information in the problem as numbers of discrete, countable individuals- 
that is, when they are required to construct a frequentist representation, as 
they were in the active pictorial condition - 92% of them gave the correct 
bayesian answer. 

SUMMARY OF PART 1 

The original, non-frequentist version of the medical diagnosis problem, 
which presents the problem information as percents and asks for the answer 
as a single-event probability, elicited bayesian performance from only 12% 
of subjects. But by simply translating this problem into frequentist terms, we 
were able to elicit correct bayesian reasoning from 76% of our subjects. By 
requiring them to create a concrete, visual frequentist representation of the 
problem, we were able to push their performance to 92% correct. Fig. 3 
summarizes these results. 

~4 For the reasons discussed above. Because a percent can be plugged directly into a formula, 
one can bypass the formation of a frequentist representation and treat it as a continuous 
variable, creating concepts such as "4.95 persons". 
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Fig. 3. Summary of the main results of Part 1, comparing the percent of correct bayesian 
answers for the original, non-frequentist version to the percent correct for the two frequentist 
versions. In the active pictorial condition, which elicited the highest levels of bayesian 
performance, subjects were required to form a frequentist representation. 

PART II. CAN NON-FREQUENTIST VERSIONS OF THE MEDICAL 
DIAGNOSIS PROBLEM ELICIT HIGH LEVELS OF BAYESIAN 
REASONING? 

Because strong claims have been made that people are not good at 
bayesian reasoning, the results of Part I would be interesting even if they 
turned out to be unrelated to the frequentist hypothesis. But because we are 
interest in how probabilistic information is represented and processed by the 
human mind, we would like to go one step further and ask what it is about 
these problems that elicits such high levels of bayesian performance. 

If the mind contains inductive reasoning mechanisms that can apply a 
calculus of probability when it represents probabilities as frequencies, then 
the high levels of bayesian performance elicited in Part I should be due to 
frequentist aspects of the problem, such as asking for the answer as a 
frequency and presenting the problem information as a frequency. If one 
can create non-frequentist versions of the problem that elicit high levels of 
bayesian performance, then we would not be justified in concluding from 
the previous experiments that frequentist representations elicit bayesian 
reasoning. 

In Part II we ask the following questions: (1) Can simply clarifying the 
original Casscells et al. problem elicit high levels of bayesian performance? 
(2) Are subjects who were given the original, non-frequentist Casscells et al. 
problem actually good Bayesians who simply believed that the random 
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sampling assumption has been violated? and (3) If a violation of random 
sampling does not account for their distribution of responses, what does? 

EXPERIMENT 5 

Earlier, we noted that the original Casscells et al. problem is somewhat 
ambiguous because (1) it does not specify the true positive rate, and (2) 
subjects might not know what the term "false positive rate" means. Did the 
frequentist problems in Part I elicit high levels of bayesian performance 
because they were frequentist, or simply because they clarified these 
ambiguities in the original, non-frequentist version of the medical diagnosis 
problem? To address this question, we tested subjects on a "cleaned up" 
version of the Casscells et al. problem: one that specifies the true positive 
rate and that clearly defines the notion of a false positive rate. 

13. Materials 

The text of the problem tested in Experiment 5 was as follows: 

The prevalence of disease X is 1/1000. A test has been developed to 
detect when a person has disease X. Every time the test is given to a 
person who has the disease, the test comes out positive. But sometimes 
the test also comes out positive when it is given to a person who is 
completely healthy. Specifically, 5% of all people who are perfectly 
healthy test positive for the disease. 

What is the chance that a person found to have a positive result actually 
has the disease, assuming that you know nothing about the person's 
symptoms or signs? % 

Note that this problem specifies the true positive rate and explains the 
false positive concept. (Like the frequentist problems tested in Experiments 
2-4, the terms "true positive rate" and "false positive rate" were not used.) 
We tried to stay as close as possible to the wording of the original Casscells 
et al. problem while still providing this information. 

14. Results 

Thirty-six percent of subjects in Experiment 5 gave the correct bayesian 
answer, "2%".  This figure is significantly higher than the 12% elicited by 
the original, ambiguous version tested in E l -C1  (36% vs. 12%: Z = 1.99, 
phi = .28, p = .023). Nevertheless, this level of bayesian performance is 
nowhere near the average of 76% correct elicited by the two comparable 
frequentist versions tested in Part I (E3-C2 vs. E5: 80% vs. 36%: Z = 3.15, 
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p h i =  .45, p =.0008; E2-C1 vs. E5: 72% vs. 36%: Z = 2 . 5 5 ,  ph i=  .36, 
p = .0054). 

One can get some insight into how these subjects were solving the 
problem by looking at their calculations. Although they were not asked to 
show their work, some subjects wrote their calculations on the test sheet. 
This was true of seven of the nine subjects who had produced the correct 
answer. All seven had analyzed the problem in frequentist terms, that is, by 
assuming a population of fixed size and figuring out how many individuals 
would fall into each category. For example, one subject had written, "51 
positive/1000 total, 1 real/51 pos"; another, "1000 people; 1 tests positive is 
positive; 999 healthy, 5% test positive; - 5 0  test positive are negat ive/ -51 
positive; 1/51 have disease." This was also true of the original version of the 
problem tested in E l -C1 :  two out of the three subjects who gave the correct 
bayesian answer to that problem wrote out a frequentist analysis. (Natu- 
rally, many subjects wrote out this kind of calculation for the frequentist 
versions of the problem.) In contrast, the only subject in Experiment 5 
whose calculations indicated that he had tried to use Bayes' formula came 
up with "99.905%" rather than "2%"! 

This suggests that many people who correctly solve non-frequentist 
versions of the medical diagnosis problem do so by translating it into 
frequentist terms. Indeed, formulas are of no use unless one can correctly 
map the concepts in the problem onto the terms of the formula, which may 
be particularly difficult for probability problems that are not expressed in 
frequentist terms. 

Why was "95%" the modal response for the original Casscells et al. 
problem? It could be because subjects were taking "false positive rate" to 
refer to p(heal thylposi t ive)-what  a patient who tests positive wants to 
k n o w - r a t h e r  than p(posi t ive[heal thy)-what  a scientist who constructs 
diagnostic tests wants to know. If so, then clarifying the meaning of this 
term in Experiment 5 should reduce the number of subjects who made this 
response. That is just what happened. Whereas 56% of subjects answered 
"95%" on the original version (E l -C1) ,  only 32% of subjects did on the 
clarified version tested in Experiment 5 (56% vs. 32%: Z = 1.71, phi = .24, 
p = .044). Actually, 28% is a more appropriate figure than 32%, because 
one subject answered "95.2%", the precision of which indicates that he was 
using the Bayesian principle of indifference, rather than interpreting "false 
positive rate" as an inverse probability. As we discuss in Experiment 6, the 
Bayesian principle of indifference can be appropriate to use when one does 
not know whether a sample was randomly drawn. 

EXPERIMENT 6 

To apply Bayes' t h e o r e m -  or any other statistical t h e o r y -  correctly, one 
must first make sure that the assumptions of the problem match the 
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assumptions of the theory. For example, it is inappropriate to use a base 
rate as one's prior probability if one does not believe that the sample one is 
reasoning about was randomly drawn. 

How does one decide whether the assumptions of a problem match those 
of a statistical theory? Because factors such as random sampling and 
independence of events differ from domain to domain, Gigerenzer and his 
colleagues have argued that one should draw on one's knowledge of the 
problem domain (Gigerenzer & Murray, 1987). This appears to be just what 
subjects do. In an elegant series of experiments, Gigerenzer, Hell, and 
Blank (1988) showed that subjects take base rates into account only when 
they are convinced that the random sampling assumption has been met. 
When their real-world knowledge of a domain confirms the random 
sampling assumption, subjects will take base rates into account. But when 
their real-world knowledge of a domain contradicts the random sampling 
assumption, they will take base rates into account only if the experimenter 
can convince them that the assumption has, in fact, been m e t - b y ,  for 
example, asking subjects to reach into urns and draw the sample themselves 
(Gigerenzer et al., 1988). These results indicate that, in the past, subjects 
have sometimes been categorized as performing erroneously when they were 
intuitively (and presumably nonconsciously) more sophisticated than the 
formal framework that experimenters were using to judge them, 

The physicians and fourth-year medical students tested by Casscells et al. 
had a great deal of real-world knowledge about the conditions under which 
patients are given diagnostic tests - most of which would have contradicted 
the random sampling assumption. Under normal circumstances, clinicians 
give diagnostic tests only to patients who are already exhibiting some 
symptoms of a disease. This is a highly select group of p e o p l e - n o t  a 
random sample from the general population. Yet a base rate of "1 out of 
1000" applies to the population as a whole, not to this select group. 
Gigerenzer and Murray (1987, p. 166) point out that if these physicians had 
assumed that the person being tested did not represent a random draw from 
the general population, then setting their prior probability at 1/1000 would 
have been a normative error. 

If these physicians had been told what disease was being tested for, they 
could have set their prior probability based on the frequency with which 
their patients have that disease. But in the original Casscells et al. problem 
the disease is unspecified. One way of dealing with this lack of information 
within the framework of Bayes' theorem is to adopt the "principle of 
indifference", and set one's prior probability at 50%. On this assumption, 
the correct bayesian answer is " 9 5 . 2 % " - a n d  "95%" was the modal 
response for Casscells et al.'s subjects. This raises the possibility that 
Casscells et al.'s Harvard Medical School students and staff were engaging 
in c o r r e c t  bayesian reasoning (Gigerenzer & Murray, 1987, p. 166). We will 
call this hypothesis the "indifference" hypothesis. 

Alternatively, "95%" might have been the modal answer in both Casscells 
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et al.'s experiment and our replication of it because subjects thought that a 
"false positive rate" is an inverse probability (i.e., p(healthylpositive)), 
rather than a likelihood (i.e., p(positivelhealthy)). In other words, they may 
think that a 5% false positive rate means that (i) out of every 100 people 
who test positive for the disease, 5 test falsely s o - t h a t  is, are actually 
healthy (an inverse probability), rather than (ii) out of every 100 healthy 
people, 5 will test positive (a likelihood). If one takes a false positive rate to 
be an inverse probability, then "95%" is the correct answer, because the 
p(diseaselpositive) = 1 -  p(healthylpositive)= 1 -  .05 = .95. We will call this 
hypothesis the "inverse probability" hypothesis. 

Although we have no way of finding out what Casscells et al.'s physicians 
and medical students were thinking, these two competing hypotheses can be 
tested on our subject population. In Experiment 6 we do this in two ways: 
(1) by making the random sampling assumption explicit and (2) by 
increasing the false positive rate. 

If the indifference hypothesis is correct, then making the random 
sampling assumption explicit should elicit the answer " 2 % "  from more 
subjects than the problem tested in Experiment 5, where no statement about 
random sampling was made. In contrast, if the inverse probability hypoth- 
esis is correct, then the distribution of responses should be the same as that 
for Experiment 5. 

Increasing the false positive rate tests between these two hypotheses in a 
different way. With a false positive rate of 5%, the indifference hypothesis 
and the inverse probability hypothesis yield the same a n s w e r - " 9 5 % " .  But 
for a false positive rate of 40%, a good Bayesian who was applying the 
principle of indifference would answer "71%",  ~5 whereas a person who 
assumed that the false positive rate was an inverse probability would answer 
"60%".  

15. Materials 

Experiment 6 had two conditions. 

Condition 1 (E6-C1) 

The text of the problem tested in Condition 1 was very similar to the text 
of the problem tested in Experiment 5, the non-frequentist version in which 
the meaning of false positive rate was clarified: 

~5 In applying the indifference principle, one assumes that p(disease)= p(healthy).  Out of a 
population of 200 people, 100 would have the disease, and all of these would test positive. One 
hundred would be healthy, but because the false positive rate is 40%, 40 of these healthy 
people would also test positive. The total number of people who test positive would therefore 
be 140. Thus 100 people would have the disease and test positive for it, out of a total of 140 
who test positive for it; 100/140 = 71%. 
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The prevalence of disease X among Americans is 1/1000. A test has 
been developed to detect when a person has disease X. Every time the 
test is given to a person who has the disease, the test comes out positive. 
But sometimes the test also comes out positive when it is given to a 
person who is completely healthy. Specifically, 5% of all people who are 
perfectly healthy test positive for the disease. 

Imagine that we have given this test to a random sample of Americans. 
They were selected by a lottery. Those who conducted the lottery had no 
information about the health status of any of these people. 

What is the chance that a person found to have a positive result actually 
has the disease? % 

The second paragraph tells the subject that the random sampling assump- 
tion has been met. Gigerenzer et al. (1988) found that interjecting the single 
word " random" was insufficient to convince subjects that the random 
sampling assumption had been met when their experience dictated other- 
wise, so we used this longer and more explicit statement in Condition 1. 
Condition 2 is important, however, because we cannot be absolutely sure 
that even a long verbal statement is sufficient to counteract a lifetime of 
experience. 

Condition 2 (E6-C2) 

The text of Condition 2 read as follows: 

If a test to detect a disease whose prevalence is 1/1000 has a false positive 
rate of 40%, what is the chance that a person found to have a positive 
result actually has the disease, assuming that you know nothing about the 
person's symptoms or signs? % 

It is identical to the original Casscells et al. problem and to the problem 
tested in E l - C 1 ,  except that the false positive rate is 40% rather than 5%. 
We modeled this problem on the original Casscells et al. problem rather 
than on the clarified version tested in Experiment 5 because (1) the meaning 
of "false positive" is ambiguous only in the original version, and (2) the 
original elicited the highest proportion of "95%" responses ("95%" is the 
response we are trying to explain). 

16. Results 

We will compare the results of E6-C1 to those of Experiment 5 because 
the only difference between these two problems is that E6-C1 made the 
random sampling assumption explicit. If the indifference hypothesis were 
true, then the number of subjects answering "95%" in E6-C1 should drop, 
and the number answering " 2 % "  should rise. Although only 16% of 
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subjects answered "95%" in this condition, this is not significantly different 
from the 32% who gave this answer in Experiment 5 (Z = 1.32, phi = .19, 
p = .09). Similarly, the number of subjects answering "2%" did not rise, 
even by the most liberal scoring criterion. Twenty-eight percent of subjects 
in Condition 1 answered "2%", as compared to 36% in Experiment 5. (By 
an unusually liberal scoring criterion that mitigates against the indifference 
hypothesis, 16 the figure for E6-C1 was 48% -which is still not significantly 
different from the results obtained in Experiment 5.) Thus the results of 
Condition 1 do not support the Bayesian indifference hypothesis. 

Nor do the results of Condition 2 support the Bayesian indifference 
hypothesis (see Fig. 4). If the indifference hypothesis were correct, then 
there should be a large number of subjects who answer "71%". In contrast, 
if the inverse probability hypothesis were correct, as many subjects should 
answer "60%" in Condition 2 as answered "95%" in E l - C 1 -  the original 
Casscells et al. problem. Only one subject in this condition answered 
" 7 1 % " - t h e  Bayesian indifference answer. In contrast, 60% of them 
answered "60%"-which is almost identical to the 56% of subjects who 
answered "95%" in El -C1.  These results clearly support the inverse 
probability hypothesis over the indifference hypothesis. 

Indeed, the response profiles for the two original versions tested (E6-C2 
and E l - C 1 )  were virtually identical, despite the large difference in given 
false positive rates (40% vs. 5%). For E6-C2, the correct bayesian response 
if one accepts the 1/1000 base rate is 0.25%. One subject in this condition 

t6 If we were to use the same (standard) scoring criterion for this exper iment  that we did for 
all of  the others,  the results would look even better for the frequentist  hypothesis  that is the 
major  thrust  of  this article: only 28% would be scored as answering correctly on this clarified 
non-frequent is t  version, and the various frequentist  versions discussed elsewhere in this article 
would look even better in comparison.  However,  to be conservative, we analyzed the results as 
follows: there were five subjects in E 6 - C I  who answered ".02".  It seems likely that three of 
these subjects had simply not  seen the percent  sign next to the answer blank, because in their 
calculations these three had written that the answer was 1/50 - which is 2%. It is impossible to 
de termine  whether  the other  two subjects who answered ".02" also missed the percent sign, or 
whe ther  they simply solved the problem incorrectly. A liberal scoring criterion that gave all five 
of these subjects the benefit of  the doubt would bring the total to 48%. For analyses later in the 
paper ,  we preferred to take a middle course, and count as correct the three subjects who clearly 
unders tood that 1/50 was the correct answer,  bringing the total to 40% correct. This apparent  
confusion did not arise in any of the other  problems that asked for the answer as a 
percent  - errors were not variants of " 2 % "  that merely differed by a misplaced decimal point in 
one direction or the other. Therefore,  the low proportion of Bayesian responses obtained in 
these conditions cannot be accounted for by the assumption that some subjects simply did not 
see the percent  sign. Nor can they be accounted for by the hypothesis that subjects cannot  
t ransform a number  into a percent.  If subjects could not t ransform percents to frequencies (or 
vice versa), then  errors consisting of misplaced decimal points would be the rule rather than  the 
exception.  Moreover,  performance would not have been so high (64% correct) on E7-C1, 
which asked for the answer as a frequency, but  which presented the problem information as a 
percent:  to give the correct answer, these subjects had to be able to unders tand what that 
percent  information meant .  
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Fig. 4. Percentage of subjects who gave the correct answer assuming they interpreted a false 
positive rate to be a likelihood, versus the percentage who gave the correct answer assuming 
they interpreted it to be an inverse probability. The results support the inverse probability 
hypothesis over the Bayesian indifference hypothesis. 

did a correct frequentist analysis, rounding 1/400 to 0.2%; another, who 
applied Bayes' rule, answered 0.5% due to an arithmetic error (he thought 
0.4 × 999 = 200, rather than 400). Whether we count only the first individual 
as correct or both of them, the number of subjects in E6-C2 who gave the 
correct bayesian answer given a prior probability of 1/1000 was very similar 
to the matching condition in Experiment 1 (E6-C2:1  or 2/25; E1-CI: 
3/25). 

DISCUSSION FOR PART II 

Can one elicit the very high levels of bayesian performance found in Part I 
merely by eliminating ambiguities in the original, non-frequentist Casscells 
et al. problem, or is there something special about representing a problem in 
frequentist terms? 

In Part II we eliminated the hypothesis that merely clarifying terms in the 
original Casscells et al. problem is sufficient to produce these high levels of 
bayesian performance. Experiment 5 tested an amended version of the 
original problem, which included the true positive rate and clarified the 
notion of a false positive rate. This elicited correct bayesian performance 
from only 36% of subjects tested - a far cry from the 76% correct elicited by 
the two comparable frequentist versions in Part I, or the 92% correct 
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Fig. 5. Although clarifying a non-frequentist problem boosts performance slightly, it is not 
sufficient to elicit the high levels of bayesian performance that frequentist problems do. 

elicited by the active-pictorial condition, which forced subjects to construct a 
concrete, visual frequentist representation (see Fig. 5). Moreover, at least 7 
out of the 9 subjects who did provide the correct bayesian answer for this 
non-frequentist problem did so by translating the problem into frequentist 
terms. The low levels of bayesian performance on the original Casscells et 
al. problem are not a mere artifact of ambiguities in the wording of the 
problem. 

Did the original Casscells et al. problem elicit low levels of " 2 % "  
responses and high levels of "95%" responses because the subjects were 
good Bayesians who believed that the random sampling assumption had 
been violated and therefore applied the principle of indifference? (If so, 
then "95%" is the correc t  answer.) We eliminated this hypothesis as well. 
Making the random sampling assumption explicit in E6-C1 elicited the same 
distribution of responses as the comparable problem tested in Experiment 
5 - t h e  number of " 2 % "  responses was no higher, the level of "95%" 
responses no lower. Because verbal statements about random sampling are 
not always sufficient to cause a subject to ignore their real-world knowledge 
of a domain (Gigerenzer et al., 1988), we also tested this hypothesis in a 
different way. If people were applying the Bayesian principle of indiffer- 
ence, then a version of the original Casscells et al. problem with a false 
positive rate of 40% should elicit the answer "71%" from as many subjects 
m E6-C2 as answered "95%" in E l - C 1 -  that is, 56% of them. Instead, 
only one subject in E6-C2 answered " 7 1 % " - t h a t  is, 4% of subjects tested 
in that condition. 

If subjects are not answering "95%" in the original problem because they 
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are using the Bayesian principle of indifference, then why is this the modal 
response? The data of Part II support the hypothesis that subjects gave this 
answer because they were assuming that a false positive rate is an inverse 
probability rather than a likelihood. The inverse probability hypothesis and 
the indifference hypothesis predict the same r e s p o n s e - " 9 5 % " - w h e n  the 
false positive rate is set at 5%, but they predict different responses when the 
false positive rate is 40%-inverse  probability predicts "60%", whereas 
indifference predicts "71%". Sixty percent of subjects tested in E6-C2 
answered "60%" and only one answered "71%". The number of subjects 
who gave the inverse probability response in E6-C2 was almost identical to 
the number who gave the comparable response ("95%") in the original 
Casscells et al. problem. The hypothesis that subjects were assuming that 
the false positive rate was an inverse probability in the original problem 
(E l -C1)  is also supported by the results of Experiment 5. In Experiment 5 
we made it clear that 5% was a likelihood rather than an inverse probability. 
This caused the number of subjects answering "95%" to drop from a high of 
56% in El -C1 to 28% in Experiment 5. 

We would like to emphasize that if one believes that a false positive rate is 
an inverse probability, then "95%" is the correct answer-  not a normative 
error. Our results accord well with those of Eddy (1982) who, in an analysis 
of the medical literature and an informal survey of physicians, found that 
many physicians interpret likelihoods, such as true and false positive rates, 
as inverse probabilities. 

The frequentist problems tested in Part I differed from the original, 
non-frequentist Casscells et al. problem in a number of ways: (1) they were 
less ambiguous; (2) they made the random sampling assumption explicit; 
and (3) they expressed the problem in frequentist terms. The experiments of 
Part II eliminated the hypothesis that the dramatic effects obtained in Part I 
were caused by the first two factors, either singly or in combination; neither 
stating a problem clearly, nor making the random sampling assumption 
explicit is sufficient to elicit high levels of bayesian reasoning from a 
problem that is not expressed in frequentist terms. This leaves factor 
(3) - the fact that the problems in Part I that elicited high levels of bayesian 
performance were expressed in frequentist terms. In Part III, we further test 
the hypothesis that frequentist representations afford correct bayesian 
reasoning by seeing whether systematically subtracting various frequentist 
elements lowers bayesian performance. 

PART III. DO FREQUENTIST REPRESENTATIONS OF THE 
MEDICAL DIAGNOSIS PROBLEM ELICIT CORRECT BAYESIAN 
REASONING? 

In Part III we further investigate the hypothesis that frequentist repre- 
sentations elicit correct bayesian reasoning by (1) adding frequentist 
representations to problems that lack them, and (2) subtracting frequentist 



48 L. Cosmides, J. Tooby / Cognition 58 (1996) 1-73 

representations from problems that have them. We will address three 
questions: (1) Does asking for the answer as a frequency rather than as a 
single-event probability improve bayesian performance, all else equal? (2) 
Does asking the subject to answer the problem with respect to an explicitly 
enumerated population improve performance? and (3) Does presenting the 
problem information as frequencies, rather than as percents, improve 
performance? 

EXPERIMENT 7 

For a died-in-the-wool frequentist, a probability can refer only to a 
relative frequency defined with respect to a specified reference class; it 
cannot, in principle, refer to a single event. In other words, it is meaningful 
to ask "How many people who test positive for the disease will actually have 
the disease?", but it is not meaningful to ask "What is the chance that a 
person who tests positive for the disease actually has it?" The first question 
asks for a frequency, the second for the probability of a single event. 

Does the untutored human mind also distinguish between frequencies and 
single-event probabilities? If there are mechanisms that can apply a calculus 
of probability when they represent probabilities as frequencies defined over 
a reference class, then asking for the answer to the medical diagnosis 
problem as a frequency should elicit higher performance than asking for the 
answer as a single-event probability. We tested this hypothesis in Experi- 
ment 7. 

17. Materials 

Experiment 7 had three conditions. 

Condition 1 (E7-C1) 

First, we wanted to see whether asking for the answer as a frequency 
could improve performance on a problem that was otherwise non-fie- 
quentist. Thus, Condition 1 was designed as a focused comparison for the 
clarified version of the original Casscells et al. problem tested in Experiment 
5. 

E7-C1 and E5 were identical, except for one thing: whereas Experiment 
5 asked for the answer as a single-event probability, this condition asked for 
the answer as a frequency. In all other respects, the two problems are 
exactly the same: both present the problem information as percentages, 
neither makes the random sampling assumption explicit, and neither 
provides an explicitly enumerated population for the subject to think in 
terms of. 
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Thus, where the text of Experiment 5 read: "What is the chance that a 
person found to have a positive result actually has the disease, assuming that 
you know nothing about the person's symptoms or signs? % " ,  the text 
of Experiment 7, Condition 1 read: 

Assume you know nothing about any person's symptoms or signs. 
Given the information above: 
on average, 
How many people who test positive for the disease will actually have the 
disease? out of 

If frequentist representations activate bayesian reasoning mechanisms, 
then this condition should elicit a higher percentage of bayesian responses 
than the 36% elicited by Experiment 5. 

Condition 2 (E7-C2) 

The purpose of Condition 2 was to see whether asking for the answer as a 
single-event probability could lower performance on a problem that was 
otherwise frequentist. Thus, Condition 2 was designed as a focused com- 
parison for the two pure frequentist problems tested in E2-C1 and E3-C2, 
for which the average level of bayesian performance was 76% (n -- 50). Both 
the frequentist problems from Part I, and the problem tested here, 
presented the problem information as frequencies, made the random 
sampling assumption explicit, and gave subjects an explicitly enumerated 
population of 1000 to think in terms of (as in "Imagine that we have 
assembled a random sample of 1000 Americans"). These problems differed 
in only one respect: whereas the experiments reported in Part I asked for 
the answer as a frequency, this condition asked for the answer as a 
single-event probability. Thus, where the text of the Part I problems read: 
"How many people who test positive for the disease will actually have the 
disease? _ _  out of ", the text of this condition read: "What is the 
chance that a person found to have a positive result actually has the disease? 

%,, 

If the frequentist hypothesis is correct, then this condition should elicit 
fewer bayesian responses than the 76% elicited by E2-C1 and E3-C2 in 
Part I. 

Condition 3 (E7-C3) 

Condition 3 was designed as a focused comparison for the non-frequentist 
problem tested in Experiment 6, Condition 1 (E6-C1). Both problems 
present the problem information as percentages; both make the random 
sampling assumption explicit; neither provide an explicitly enumerated 
population for the subject to think in terms of. They differ in only one way: 
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w h e r e a s  E 6 - C 1  asked  for  the  answer  as a s ing le-event  p robab i l i t y ,  this 
cond i t i on  asked  for  the  answer  as a f requency .  Thus ,  where  the  text  of  
E 6 - C 1  read :  W h a t  is the  chance  tha t  a pe r son  found  to have  a pos i t ive  
resul t  ac tua l ly  has the  d i sease?  % " ,  the  text  of  E x p e r i m e n t  7, cond i t ion  
3 read :  

G i v e n  the i n fo rma t ion  above :  
on  ave rage ,  
H o w  m a n y  p e o p l e  who test  pos i t ive  for  the  d isease  will actually have the  
d i sease?  out  of  

If  the  f requen t i s t  hypo thes i s  is cor rec t ,  then  this cond i t ion  should  elicit  
m o r e  bayes i an  responses  than  the 40% (see f o o t n o t e  16) e l ic i ted  by E 6 - C 1 .  

18. Results 

A l l  t h r ee  p red ic t ions  were  conf i rmed  (see Fig. 6). Al l  else equa l ,  
p r o b l e m s  tha t  a sked  for  the  answer  as a f r equency  e l ic i ted  the  cor rec t  

75 

SO 

25 

[] Problem asked for single-event probability 
[] problem asked for frequency 

0 
E5 E7-C1 E6-C1 E7-C3 E7-C2 E2-C1 

E3-C2 
Clarified original % info, Frequency info, 

(% info) random sampling random sampling 
explicit explicit 

Fig. 6. All else equal, asking for the answer as a frequency enhances performance over asking 
for the answer as a single-event probability. Each pair of bars represents two problems that are 
identical, except that the first asked for the answer as a single-event probability whereas the 
second asked for the answer as a frequency. The first two pairs represent conditions in which 
the problem information was presented as a percent (hence overall performance is lower); the 
last pair represents conditions in which the problem information was presented as a frequency. 
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bayesian answer ( " 2 % " )  from more subjects than ones that asked for the 
answer as a single-event probability. 

For example, although E7-C1 and E5 were otherwise identical, 64% of 
subjects responded correctly when the answer was asked for as a frequency 
(ET-C1) ,  whereas only 36% of subjects did so when the answer was asked 
for as a single-event probability (E5). This is a 28 percentage point rise in 
performance (Z = 2.00, phi = .28, p = .023). This is all the more impressive 
given that the answer format was the only frequentist element in the 
problem: the information was presented as percents, subjects were not given 
an explicitly enumerated population to think in terms of, and the random 
sampling assumption was not made explicit. 

E7 -C2  showed that asking for the answer as a single-event probability can 
depress performance even when all other elements in a problem are 
frequentist.  The two, pure frequentist problems of Part I (E2-C1 and 
E3 -C 2)  elicited the correct bayesian answer from 76% of subjects tested 
(n = 50). E7-C2  was identical to these problems, except for the fact that it 
asked for the answer as a single-event probability. Yet it elicited the correct 
response from only 56% of subjects. Here,  asking for the answer as a 
single-event probability decreased bayesian performance by 20 percentage 
points (Z = 1.77, phi = .20, p = .04). An analysis of the errors showed that 
this decrement in bayesian performance was not the result of subjects not 
seeing the percent sign next to the answer blank, or by any inability of 
subjects to convert a number into a percent. 

Condition 3 tested a problem that was a hybrid between those tested in 
Conditions 1 and 2. Although the problem information was presented as 
percents,  as in Condition 1, the random sampling assumption was made 
explicit, as in Condition 2. Here the focused comparison was between 
Condition 3, which asked for the answer as a frequency, and E6-C1,  which 
was identical except that it asked for the answer as a single-event probabili- 
ty. Whereas 40% of subjects gave the correct bayesian answer in E6-C1,  
where they were asked for a single-event probability, 60% of subjects gave 
the correct bayesian answer in Condition 3, where they were asked for a 
frequency. This is a 20 percentage point difference, just as in the Condition 
2 focused comparison. Although this difference is not significant at the .05 
level given only n = 25 per group, we note that the effect size, phi, is 
identical to that found in the Condition 2 comparison (Z = 1.41, phi = .20, 
p = .08). 

By combining the results of these three focused comparisons, we can 
estimate the amount by which asking for the answer as a frequency, as 
compared to a single-event probability, increases bayesian performance. On 
average, the three problems that asked for the answer as a frequency 
elicited the correct bayesian response from 69% of subjects tested, whereas 
the three that asked for the answer as a single-event probability elicited this 
response from 44% of subjects tested. This produces an effect size, phi, of 
.25 (Z = 3.32, p = .0005). 



52 L. Cosmides, J. Tooby / Cognition 58 (1996) 1-73 

Can the decrement in performance for problems that ask for the answer 
as a single-event probability be accounted for either by arithmetic errors in 
converting a number into a percent, or by the failure to see the percent sign 
next to the answer blank? No. No one gave an answer like ".02" or ".2" in 
either E7-C2, or E5, or El-C1,  nor did anyone give a functionally 
equivalent answer in E6-C2 (the 40% false positive rate problem)- yet all 
of these problems asked for the answer as a single-event probability. The 
only single-event probability problem where it appeared that some subjects 
may have failed to see the percent sign was E6-C1, and for this problem we 
used a more liberal scoring criterion to reflect this fact (see footnote 16). 

Thus, the results of Experiment 7 show that asking for the answer as a 
frequency rather than as a single-event probability enhances bayesian 
performance by 20-28 percentage points. 

EXPERIMENT 8 

If frequencies are the natural format for some of our inductive reasoning 
mechanisms, then a very straightforward way of solving probability prob- 
lems is to imagine a population of fixed size and then simply count up how 
many individuals fall into each category- in this case, how many have the 
disease and test positive for it, and how many test positive for the disease 
whether they have it or not. For example, if one imagines a population of 
1000 people (randomly drawn), then 1 should have the disease, and this 
person should test positive for it, as well as 50 people who are healthy. Thus 
one person will have the disease and test positive for it out of 51 who test 
positive for it. 

Anything that encourages subjects to represent the problem in this way 
should enhance bayesian performance. We thought that asking subjects to 
solve the problem with respect to a population of fixed size might encourage 
the formation of this kind of representation, and therefore improve 
performance. Hence, in Experiment 8, the question we addressed was, 
"Does asking the subject to answer the problem with respect to an explicitly 
enumerated population improve performance?" 

19. Materials 

Experiment 8 had two conditions. 

Condition 1 (E8-C1) 

Condition 1 was designed as a focused comparison to the problem tested 
in E7-C3. Both present the problem information as percents, both make the 
random sampling assumption explicit, and both ask for the answer as a 
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frequency. The only difference between the two is that this condition 
provides the subject with an explicitly enumerated population whereas 
E7-C3 did not. Thus, where E7-C3 read: "Imagine that we have given this 
test to a random sample of Americans", this condition read: "Imagine that 
we have assembled a random sample of 1000 Americans." If providing the 
subject with an explicitly enumerated population improves performance, 
then this condition should elicit more bayesian responses than the 60% 
elicited by E7-C3. 

Condition 2 (E8-C2) 

Condition 2 was designed as a focused comparison for the pure frequentist 
problems tested in Part I (E2-C1 and E3-C2). Both present the problem 
information as frequencies, both make the random sampling assumption 
explicit, and both ask for the answer as a frequency. The only difference 
between the two is that the frequentist problems from Part I provided the 
subject with an explicitly enumerated population whereas this condition did 
not. Thus, where the Part I problems read: "Imagine that we have 
assembled a random sample of 1000 Americans", this condition read: 
"Imagine that we have given this test to a random sample of Americans." If 
providing the subject with an explicitly enumerated population improves 
performance, then this condition should elicit fewer bayesian responses than 
the 76% (n = 50) elicited by the pure frequentist problems of Part I. 

20. Results 

Providing the subject with an explicitly enumerated population does not 
seem to make any difference. Condition 1, which provided an explicitly 
enumerated population, elicited bayesian performance from 52% of subjects 
tested, whereas the figure for E7-C3 was 60%. Similarly, whereas the pure 
frequentist problems of Part I, which provided an explicitly enumerated 
population, elicited bayesian performance from 76% of subjects tested, the 
figure for Condition 2, which lacked an explicitly enumerated population, 
was 68%. This is not significantly lower than 76% (Z = 0.74, phi--.09, 
p = .23). 

This should not be terribly surprising. Being asked to imagine a random 
sample of people of unspecified size is not too different from being asked to 
imagine a random sample of specified size - both encourage the subject to 
represent the problem information as frequencies defined with respect to a 
population. But it seems that even more minimal cues are sufficient to elicit 
a frequentist representation of the problem. The problem tested in E7-C1 
was identical to those tested in E8-C1 and E7-C3, insofar as they all 
presented the problem information as percents and asked for the answer as 
a frequency. The only difference is that E8-C1 and E7-C3 ask the subject 
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to imagine a random sample of people (explicitly enumerated in E8-C1, but 
not in E7-C3), whereas the problem tested in E7-C1 does not. Even 
though it does not ask subjects to imagine a population at all, E7-C1 
elicited the correct bayesian response from 64% of subjects tested, a 
number that does not differ significantly from the average of 56% correct 
(n = 50) found for E7-C3 and E8-C1, which did ask subjects to imagine a 
population (64% vs. 56%: Z = 0.66, phi = .08, p = .25). 

Considering performance on E6-CI also supports the conclusion that 
providing a population to think in terms of, whether explicitly enumerated 
or not, does not affect subjects' tendency to represent the problem in 
frequentist terms. By making the random sampling assumption explicit, this 
condition provided a population to think in terms of, but it presented the 
problem information as percents and asked for a single-event probability 
answer. This condition elicited the same (low) level of bayesian performance 
as E5 did, even though it asked subjects to imagine a population and E5 did 
not (40% vs. 36%; see analysis for Experiment 6). 

Taken together, these results indicate that asking the subject to imagine a 
population, whether explicitly enumerated or not, does not affect the level 
of bayesian performance one way or the other. If other elements in the 
problem cause the subject to construct a frequentist representation, the level 
of bayesian performance will be high; if not, it will be low, regardless of 
whether the subject is explicitly asked to imagine a population. 17 

20.1. Does presenting the problem information as a percent rather than a 
frequency decrease bayesian performance? 

This question may, at first glance, appear to be a strange one: after all, 
isn't a percent simply a frequency out of a population of 100? Technically, 
this is true. But people with even junior high school mathematics skills have 
been taught how to plug percents directly into formulas, thus allowing them 
to use percents mathematically by simply manipulating symbols. When used 
in this way, it is easy to forget that a percent is a frequency because cranking 
through a formula does not require one to construct a frequentist repre- 
sentation of what that percent means. And, as we saw from the data on 
rounding in Part I, percent representations seemed to encourage subjects to 
represent the problem information in terms of continuous distributions, 
whereas frequentist representations seemed to encourage them to represent 
the problem in terms of discrete, countable individuals. 

,7 In keeping with the frequentist  hypothesis,  we used round population numbers  large 
enough  that subjects would not have to think about fractions of individuals. It is possible, 
however,  that requiring subjects to answer the question with respect to a population of, say 87, 
might worsen performance,  for two related reasons: (1) given a base rate of  1/1000, they would 
have to think about fractions of people; and (2) arithmetic errors are more likely when one has 
to convert  "50 out  of  10ft)" to 5% and then compute  5% of 87, than when one can work 
directly with "50 out of 1000". 
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Furthermore,  raw frequency information is more informative than percent 
information because it contains information about sample size. Because 
percents are normalized on a population of 100, they contain no information 
about the sample size the figure was derived from, and hence no information 
about how reliable that figure is. A mechanism that was designed to 
represent probabilities in the world in frequentist terms should therefore act 
on actual frequencies rather than automatically normalizing them into a 
percent;  "5 out of 100" should seem a more "bri t t le",  less trustworthy 
number  than "50 out of 1000". Percentage representations are most useful 
when one wants to compare frequencies between groups (as we wanted to in 
analyzing the data for these experiments). They allow one to think in terms 
of frequencies out of a normalized population of 100. 

We wanted to see whether presenting the problem information as a 
frequency rather than a percent would enhance bayesian performance. 
Therefore ,  in some of our problems, the false positive rate was presented as 
a frequency, whereas in others it was presented as a percent. We have been 
calling the first "frequency information" problems, and the second "percent  
information" problems. So, for example, a frequency information problem 
would present the false positive rate by saying, "Specifically, out of every 
1000 people who are perfectly healthy, 50 of them test positive for the 
disease", whereas a matching percent information problem would say 
"Specifically, 5% of all people who are perfectly healthy test positive for the 
disease." For the frequency information problems we chose a base popula- 
tion large enough that the smallest category in the problem would still have 
at least one whole individual in it; thus, for problems where the base rate 
was 1/1000, we said "out  of every 1000 people who are perfectly healthy, 50 
of them test positive for the disease", and for problems where the base rate 
was 1/100 (the pictorial problems), we said "out  of every 100 people who 
are perfectly healthy, 5 of them test positive for the disease". We thought 
this would encourage our subjects to choose a reference class large enough 
that they would not have to think in terms of fractions of individuals. If we 
have mechanisms that represent probabilities as frequencies defined over a 
reference class of discrete, countable entities, then this should improve 
performance.  

For the same reason, we never presented the base rate, 1 out of 1000, as a 
percent.  Although we thought presenting it as .001 or 0.1% would certainly 
have a negative effect on performance, we thought this would be stacking 
the deck too much in favor of the frequentist hypothesis for two reasons, 
one legitimate and the other not. From the point of view of the frequentist 
hypothesis, the legitimate reason is that 0.1% represents one-tenth of a 
person out of a population of 100. If there are mechanisms that represent 
frequencies in terms of discrete, countable entities, it should be difficult to 
think about a tenth of a person, and therefore the level of bayesian 
performance should decrease. On the other hand, a decimal percent is more 
likely to engender arithmetic errors when one is converting it to a frequency 
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than is a whole number percent. This kind of error is theoretically 
uninteresting, because we wanted to test our subjects' ability to reason 
probabilistically, not their ability to do arithmetic. As a compromise 
solution, we presented the base rate in a way that emphasized that it 
represents a frequency in the frequency information problems, but de- 
emphasized this in the percent information problems. Thus, the frequency 
information problems read: "1 out of every 1000 Americans has disease X", 
whereas the percent information problems read (following Casscells et al.): 
"The prevalence of disease X is 1/1000." The true positive rate was 
presented the same way in every problem, by saying "Every time the test is 
given to a person who has the disease, the test comes out positive." 

Experiments 1-8 allow a number of focused comparisons. Because we 
have already found that making the random sampling assumption explicit or 
providing an explicitly enumerated population have no effect on the level of 
bayesian performance, we will ignore these factors. The first comparison is 
between the six problems that asked for the answer as a frequency, but 
differed in whether they presented the problem information as a frequency 
or a percent (see Table 3). Three problems that asked for the answer as a 
frequency also presented the problem information as a frequency: E2-C1, 
E3-C2, and E8-C2. These problems elicited a bayesian answer from 72%, 
80%, and 68% of subjects, respectively, yielding an average value of 73.3% 
(n = 75). Three other problems asked for the answer as a frequency, but 
presented the problem information as a percent: ES-C1, E7-C3, and 
ET-C1, which elicited a bayesian answer from 52%, 60%, and 64% of 
subjects, respectively, yielding an average value of 58.7% (n = 75). This 
means there was, on average, a 14.6 percentage point difference between 
the frequency information problems and the percent information problems, 
given that the answer is asked for as a frequency. This difference is 
significant ( Z =  1.90, phi = .15, p = .03). We note that 58.7% for these 
"percent information/frequency answer" problems is almost identical to the 
60% found in Part I for the "frequency and percent information/frequency 
answer" problems (El-C2: 56%; E3-CI: 64%). So providing redundant 
percent information appears to decrease performance to the same level 
found for problems that present the information only as a percent. 
Furthermore, the 14.6 point difference found here compares very favorably 
with the 16 point difference found in Part I between the frequency 
information problems and the frequency and percent information problems. 
The effect sizes were also very similar: phi = .  15 for this comparison and.  17 
for the comparison from Part I. 

We can also compare performance for the three problems that asked for 
the answer as a single-event probability, but differed in whether they 
presented the problem information as a frequency or a percent. One 
problem, E7-C2, asked for the answer as a single-event probability, but 
gave the problem information as a frequency. This elicited the bayesian 
answer from 56% of subjects tested. Two problems, E6-C1 and E5, asked 
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Table 3 
Does asking for answers as frequencies contribute to performance 
independently of presenting information as frequencies? 

Information as: 

Answer  as Frequency Percent 

Frequency 73.3% 58.7% (66%) 
(n = 75) (n = 75) 

Single-event 56% 38% (47%) 
probability (n = 25) (n - 50) 

(65%) (48%) 

for the answer as a single-event probability, and gave the problem in- 
formation as a percent. These elicited the bayesian answer from 38% of 
subjects tested (E6 -CI :  40%; E5: 36%). Thus, presenting the information 
as a frequency rather than a percent resulted in an 18 percentage point 
advantage in this comparison. This number is even larger than the 14.6 point 
advantage found above for the "frequency answer" problems, but because 
this comparison involves half as many subjects it is not significant at the .05 
level (Z = 1.48, phi = .17, p = .07). The effect size for this comparison, .17, 
is very similar to the effect size of .15 for the previous one. 

If we combine all these problems, regardless of the form the answer was 
given in, then 69% (n = 100) of subjects in the frequency information 
conditions gave the correct bayesian answer, compared to 50.4% (n = 125) 
for the percent information conditions (Z = 2.81, phi = .19, p = .0025). 

These comparisons show that presenting the problem information as 
frequencies does in fact elicit higher levels of bayesian reasoning than 
presenting it as percents. 

20.2 Is the advantage obtained by presenting the problem information as a 
frequency rather than a percent independent of  the advantage obtained by 
asking for the answer as a frequency rather than a single-event probability ? 

We can answer this question by doing an analysis of variance on the nine 
problems described in the section above. Table 3 shows the breakdown of 
results. 

An analysis of variance confirms what is already obvious from Table 3 and 
from the previous analyses: asking for the answer as a frequency as opposed 
to a single-event probability contributes to performance (F(1, 221) -- 7.25, 
r = .18, p = .01) and presenting the information as a frequency as opposed 
to a percent contributes to performance (F (1 ,221)=5 .36 ,  r =  .15, p = 
.025), and they do so independently of one another (F(1,221) = .056 for the 
interaction). Moreover ,  the effect of asking for the answer as a frequency is 
a bit bigger than the effect of presenting the information as a frequency: 
r = .  18 versus .15. 
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GENERAL DISCUSSION 

Although the original, non-frequentist version of Casscells et al.'s medical 
diagnosis problem elicited the correct bayesian answer of "2%" from only 
12% of subjects tested, pure frequentist versions of the same problem 
elicited very high levels of bayesian performance: an average of 76% correct 
for purely verbal frequentist problems and 92% correct for a problem that 
requires subjects to construct a concrete, visual frequentist representation. 
This was shown in Part I. In Parts II and III, we tried to discover what 
accounts for the very high levels of bayesian performance elicited by these 
frequentist problems. 

In Part II, we showed that manipulating aspects of the medical diagnosis 
problem that are unrelated to the issue of frequentist representations - such 
as clarifying the meaning of "false positive rate" and making it clear that the 
sample was randomly drawn-cannot  produce these dramatic effects. 
Clarifying the meaning of "false positive rate" and providing the true 
positive rate for a non-frequentist problem increased bayesian performance 
slightly, from 12% to 36%, but this is nowhere near the average of 76% 
correct elicited by the pure frequentist problems, let alone the high of 92% 
correct for the more ecologically valid problem that required subjects to 
construct a concrete, visual frequentist representation. Also, in Part II we 
asked why the original Casscells et al. problem elicited a high level of 
"95%" answers both from our subjects and from Casscells et al.'s physicians 
and medical students. One possibility was that subjects understood that a 
false positive rate is a likelihood but, because they did not believe the 
sample was randomly drawn, they were applying the Bayesian principle of 
indifference. The other possibility was that they believed that a false positive 
rate is an inverse probability rather than a likelihood. Our results showed 
that the latter hypothesis was correct: in the absence of information to the 
contrary, many subjects interpret a false positive rate to be an inverse 
probability. 

In Part III, we tackled the question of the causal efficacy of frequentist 
representations directly by systematically adding and subtracting elements 
that we thought would induce subjects to construct a frequentist representa- 
tion of the problem and seeing how this affected performance. We found 
that (1) asking for the answer as a frequency rather than as a single-event 
probability improves bayesian performance, (2) although requiring subjects 
to actively construct a concrete, visual representation of frequencies does 
enhance bayesian performance, verbal instructions to merely imagine a 
population (whether explicitly enumerated or not) does not, and (3) 
presenting the problem information as frequencies, rather than as percents, 
improves bayesian performance. Asking for the answer as a frequency 
produces the largest effect, followed closely by presenting the problem 
information as frequencies. 

Verbally instructing subjects to merely imagine a population is insufficient 
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to enhance bayesian performance when the problem information is in 
percents and the answer is asked for as a single-event probability; moreover, 
such instructions seem to be superfluous when both answer and information 
are asked for and presented as frequencies. But this conclusion applies only 
to verbal instructions to imagine. The active pictorial condition tested in 
Part I showed that when subjects are instructed to construct a concrete 
visual representation of a population that depicts the relevant frequencies, 
bayesian performance is, in fact, enhanced to near perfect levels. 

In short, all the predictions of the frequentist hypothesis were confirmed: 
(1) inductive reasoning performance differed depending on whether subjects 
were asked to judge a frequency or the probability of a single event; (2) 
performance on frequentist versions of problems was superior to non- 
frequentist versions; (3) the more subjects could be mobilized to form a 
frequentist representation, the better their performance was; and (4) 
performance on frequentist problems satisfied those constraints of a calculus 
of probability that we tested for (i.e., Bayes' rule). Taken together, the 
results of Parts I-III support the hypothesis that frequentist representations 
activate mechanisms that produce bayesian reasoning, and that this is what 
accounts for the very high levels of bayesian performance elicited by the 
pure frequentist problems that we tested. 

21. Representations, algorithms and computational theories 

When we say that people have mechanisms that produce good bayesian 
reasoning, what exactly does that mean? More generally, what does it mean 
to say that the mind "embodies" aspects of a calculus of probability? 

According to David Marr: 

[There are] different levels at which an information-processing device must be understood 
before one can be said to have understood it completely. At one extreme, the top level, is 
the abstract computational theory of the device, in which the performance of the device is 
characterized as a mapping from one kind of information to another, the abstract properties 
of this mapping are defined precisely, and its appropriateness and adequacy for the task at 
hand are demonstrated.  In the center is the choice of representation for the input and output 
and the algorithm to be used to transform one into the other. And at the other extreme are 
the details of how the algorithm and representation are realized physical ly-  the detailed 
computer  architecture, so to speak. (Marr, 1982, pp. 24-25) 

The hypotheses we tested about bayesian reasoning concern Marr's first two 
levels of explanation. Bayes' theorem is part of a computational theory-  
that is, a normative t h e o r y - o f  how inductive reasoning should be con- 

ducted in certain domains. It is an abstract specification of how information 
about prior probabilities and likelihoods should be mapped onto posterior 
probabilities. 

Bayes' theorem is not a hypothesis about the representations and 
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algorithms that effect this transformation in the human mind. In principle, 
many different algorithms and representational systems can produce per- 
formance that accords with Bayes' theorem. When we tested the hypothesis 
that the mind embodies aspects of a calculus of probability, such as Bayes' 
rule, we were testing for the presence of mechanisms that implement a 
particular computational theory. 

The frequentist hypothesis tested in this article is at Marr's second level: it 
is a hypothesis about the kind of input and output representations used by 
an algorithm that accomplishes the transformation specified by Bayes' 
theorem. In saying that frequentist representations afford bayesian reason- 
ing, we are proposing that there exists at least one algorithm that maps 
frequentist representations of prior probabilities and likelihoods onto a 
frequentist representation of a posterior probability in a way that satisfies 
the constraints of Bayes' theorem. 

We have made no strong claims about the exact nature of the algorithm 
that effects this transformation on the contents we tested. Indeed, different 
algorithms may accomplish bayesian reasoning for different kinds of adap- 
tive problems (see section 23 below). The algorithm could, for example, 
have subroutines that multiply p(H)  by p(DIH) and then divide by p(D),  
but be unable to do this unless the information is in a frequentist format. 
Alternatively, the algorithm might involve no arithmetic operations beyond 
a counting subroutine. If one represents the base rate and likelihood 
information as numbers of discrete, countable individuals-that is, if one 
forms a frequentist representation - then multiplication and division become 
unnecessary. If one understands what categories of information the problem 
is asking about - in this case, "people who have the disease and test positive 
for it" and "people who test positive whether they have the disease or 
not" - then the only remaining step is to count up how many individuals fall 
into each category. Indeed, to judge from their side calculations, this 
appears to be just how our successful subjects were proceeding, a conclusion 
that is also supported by our subjects' uniformly high performance on the 
problem in which they were required to construct a visual representation of 
countable individuals. If a counting subroutine is involved, then the most 
interesting part of the algorithm would be that which allows one to map a 
complex set of relationships among different categories of information. 
These set manipulation procedures may require representations of discrete 
individuals to operate properly. On this account, both the set manipulation 
procedures and the counting subroutine would require frequentist repre- 
sentations. Together, these procedures would produce reasoning perform- 
ance that conforms to Bayes' rule; they would thereby "embody" that 
aspect of a calculus of probability. (If this account is true, then certain 
aspects of inductive and deductive reasoning may be accomplished via some 
of the same mechanisms. For example, Johnson-Laird's mental model 
theory for syllogistic reasoning also requires a representational format of 
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discrete, countable individuals and set manipulation procedures for combin- 
ing them. 18) 

To discover what our intuitive statistical competences a r e - t h a t  is, to 
discover what aspects of the human cognitive architecture reliably develop 
in the absence of explicit instruction-basic anthropology can be informa- 
tive. It can tell one what kinds of information would, and would not, have 
been reliably present in the environments in which these competences 
evolved. People everywhere are exposed to the actual frequencies of real 
events, and we seem to have unconscious mechanisms that can keep track of 
these frequencies, just as many nonhuman animals do (Staddon, 1988; 
Gallistel, 1990). In our experiments, however, subjects were exposed not to 
actual events, but to linguistic propositions about numbers - such as "50 out 
of every 1000 Americans who are perfectly healthy test positive for the 
disease." Is it possible, then, that our intuitive statistical procedures were 
designed to take linguistic propositions about numbers as input and produce 
linguistic propositions about numbers as output? Evidence from the ethnog- 
raphic record quickly eliminates this hypothesis: The number lexicon is 
extremely limited or virtually non-existent in many languages (especially for 
band-level societies). Linguistically transmitted numerical propositions were 
not a regular part of the environment in which we evolved; one would not 
expect humans to have evolved cognitive mechanisms designed to reason 
about, or accept as input, information in a form that did not exist. We may 
have mechanisms that allow linguistic information to be translated into a 
format that our intuitive statistical procedures are capable of reading, but 
these statistical procedures were surely not designed to take this kind of 
input directly. 

What, then, are we to make of our subjects' performance in these 
experiments? They have been given a number lexicon by their culture and 
taught how to perform arithmetic operations on this symbol system in 
school. Without a number lexicon at least, they could not have even 

1~ In his mental model theory, Johnson-Laird (1983) has suggested that people also solve 
syllogistic reasoning problems by representing category information in the form of discrete 
individuals. Moreover, he has claimed that syllogistic problems in which the category 
information is represented as discrete countable individuals are easier to solve than problems 
using representations that map finite sets of individuals into infinite and continuous sets of 
points, as in a Venn diagram. This is similar to our claim about bayesian problems. Indeed, both 
syllogistic and bayesian problems require one to understand the overlapping relationships 
among different categories of information- for example, people who have a disease, people 
who test positive for it, and people who are healthy. It may be that the same set manipulation 
procedures underlie both kinds of reasoning, and that these procedures require representations 
of discrete individuals to map the relationships among categories properly. On this view, the 
distinction between inductive and deductive reasoning would begin to dissolve at the mecha- 
nism level (although not at the computational theory level). 
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understood the problems as presented. Yet the balance of what our subjects 
needed to successfully solve these problems has not been culturally given: 
Most of them have not had explicit instruction in bayesian reasoning. In 
fact, those few who tried to use Bayes' formula performed poorly. 

Therefore, one cannot interpret performance on these problems as purely 
the result of culturally acquired skills, or as purely the result of reliably 
developing species-typical statistical competences. Insead, we interpret these 
results as what happens when some simple culture skills (e.g., a number 
lexicon and some basic arithmetic) tie into and activate an underlying system 
of inductive reasoning mechanisms. This underlying system must be sup- 
plying all that is necessary for solving the problem that was not explicitly 
taught. The problems we administered therefore provide a window onto the 
nature of this underlying system, even though they include elements that 
could not have been understood without an explicitly taught, culturally 
specific number lexicon. Had our subjects been unable to understand 
linguistic propositions about frequencies, then we might have observed good 
bayesian performance only for problems in which the information was 
presented as the encountered frequencies of real events. 

22. Does the mind embody aspects of a calculus of probability? 

In 1972, Kahneman and Tversky drew the following conclusion from their 
research, which is still widely accepted: "In his evaluation of evidence, man 
is apparently not a conservative Bayesian: he is not a Bayesian at all" (p. 
450). It now appears that this conclusion was premature. Frequentist 
problems elicit bayesian reasoning. This finding adds to the growing body of 
literature that shows that many cognitive biases in statistical reasoning 
disappear, and good statistical reasoning reappears, when problems are 
posed in frequentist terms. The conjunction fallacy disappears, the over- 
confidence bias disappears, base rate neglect disappears, and good bayesian 
reasoning emerges. 

Frequentist mechanisms could not elicit bayesian reasoning unless our 
minds contained mechanisms that embody at least some aspects of a calculus 
of probability. This means that the more general conclusion of the literature 
on judgment under uncertainty-that  the human mind does not embody a 
calculus of probability, but has instead only crude rules-of-thumb-must 
also be re-examined. This conclusion was based largely on subjects' 
responses to single-event probability problems. But if those inductive 
reasoning procedures that do embody a calculus of probability take fre- 
quency representations as input and produce frequency representations as 
output, then single-event probability problems cannot, in principle, reveal 
the nature of these mechanisms. It would therefore be illuminating to 



L. Cosmides. J. Tooby / Cognition 58 (1996) 1-73 63 

restate the classic single-event problems in frequentist terms. This would 
allow us to discover which aspects of a calculus of probability our inductive 
reasoning mechanisms do embody, and which aspects they do not. 

Furthermore, when reasoning performance deviates from normative 
predictions based on mathematical theories of probability, we should not 
automatically conclude that the mechanisms involved are poorly designed. 
Instead, we should investigate the possibility that our experimental protocol 
activated domain-specific reasoning procedures that are well designed for 
solving adaptive problems that were faced by our hominid ancestors, but 
which do not rely on ontogenetically observed frequencies. Rather than 
having only one or a few inductive reasoning mechanisms, the mind might 
include many different ones, each appropriate to a different kind of 
decision-making problem. 

23. Statistical inference in a multimodular mind 

In this article, we are emphatically not taking sides on the question of 
whether a frequentist interpretation of probability is intrinsically "better" or 
"truer" for scientists than a Bayesian subjective confidence interpretation, 
or whether, for example, single-event probabilities are in fact an incoherent 
notion. We are instead arguing that certain cognitive mechanisms are 
frequentist in design- that is, have elements and procedures that embody 
the theories of statistical inference used by many frequentists - because such 
designs solve certain adaptive problems with special efficiency. This will not 
be true, however, for all adaptive problems. Therefore, we are also not 
arguing that all cognitive mechanisms that guide decisions under uncertainty 
are frequentist. On the contrary, in a multimodular mind, the design of 
some mechanisms will probably echo the structure of other mathematical 
theories of probability, because the adaptive problems they address are 
better solved by designs that embody these other approaches. 

Modular, domain-specific, or content-specific approaches ultimately de- 
rive their rationale from considerations that are either implicitly or explicitly 
functional and evolutionary (Cosmides & Tooby, 1987; Marr, 1982; Symons, 
1987; Tooby & Cosmides, 1992a). This is because many families of 
important adaptive problem can be solved more efficiently by cognitive 
mechanisms that were specially tailored to meet the particular task demands 
characteristic of that problem-type (e.g., vision (Marr, 1982; Ramachadran, 
1990); language acquisition (Pinker & Bloom, 1990); the perception and 
representation of object motion (Shepard, 1984; Freyd, 1987); the repre- 
sentation of biomechanical motion (Shiffrar & Freyd, 1990); cooperation 
(Cosmides, 1989; Cosmides & Tooby, 1989; Gigerenzer & Hug, 1992)). The 
trade-off between generality of application and efficiency in performance 
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leads to different compromises in different cases, with generality of applica- 
tion by no means always winning out. 

Most adaptive problems that animals f ace -  foraging for food, avoiding 
predators, finding mates, predicting the behavior of conspecifics-require 
them to make decisions under conditions of uncertainty about the state of 
the world. Decisions made under uncertainty will be successful to the extent 
that they turn out to correspond to the actual state of the world. Applying a 
calculus of probability to subjective degrees of belief that are unlinked to 
the relative frequencies of real events or the actual structure of a specific 
situation will not allow one to find real food, avoid real predators, or predict 
the behavior of real conspecifics. Why, then, might some mechanisms 
process ontogenetically observed frequencies whereas other mechanisms 
might not? 

24. Frequencies past and present 

24.1. Architectures shaped by statistical relationships that endure across 
generations 

The nature of a psychological design should reflect the nature of the 
information that is available to be processed by that design. For any specific 
organism there are two primary sources of information: observation (on- 
togeny) and the evolutionary process (phylogeny). One might expect 
frequentist mechanisms to be activated by domains in which event fre- 
quencies are observable, are relevant to the problem, and are the sole, the 
primary, or the best source of information available for solving the problem. 
Obviously, local, recent observed frequencies will usually be the very best 
predictor of local events and relationships in the near future. But when the 
relevant frequencies are not observable during one's lifetime, or when a 
sufficient database has not or cannot be accumulated ontogenetically, 
mechanisms that rely only on ontogenetically observed frequencies will not 
generate good decisions. When actual observation during the lifespan of the 
individual is impossible, other sources of information must be used. 

The world has a rich structure of recurring covariant relationships, most 
of which cannot be directly observed by the limited and local perceptual 
systems of an individual organism. But frequencies of events in the past can 
be "observed" by natural selection: Over many generations, cognitive 
systems whose designs better reflect the recurrent structure of the world 
tend to outreproduce and replace designs that do not. Natural selection can 
therefore create designs that "assume" that certain distributions and 
relationships are true, even though they cannot be observed during the 
lifetime of an individual (e.g., Staddon, 1988; Tooby & Cosmides, 1990). 
For example, the recurrent statistical relationship between ingesting toxic 
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plant secondary compounds and spontaneous abortions during the first 
trimester is virtually impossible to observe; consequently, women have 
mechanisms that "assume" this relationship, producing the first trimester 
food aversions, nausea, and vomiting known as "pregnancy sickness" 
(Profet, 1988, 1992). Similarly, the statistical relationship between helping 
in accordance with Hamilton's rule and fitness cannot be induced because it 
cannot, in principle, be observed during one's lifetime; the rule can be 
followed only if one has phylogenetically given decision rules that embody it 
(Cosmides & Tooby, 1987, 1994). 

Even when organisms can, in principle, observe the relevant frequencies 
during their individual lifetimes, they must sometimes make decisions that 
have large fitness consequences before they have had the opportunity to 
develop a data base that is large enough to be reliable. This is particularly 
true of domains in which covariant events happen infrequently. For 
example, few people have actually observed a lethal snake bite. But over 
evolutionary time there has been a recurrent statistical relationship between 
the presence of snakes and the occurrence of potentially lethal bites. This 
has selected for domain-specific mechanisms that regulate judgment under 
uncertainty about snakes which "assume" that they pose a danger (Marks, 
1987; Cook, Hodes, & Lang, 1986; Cook, Mineka, Wolkenstein, & Laitsch, 
1985). Certainly, American children are not pure frequentists about sources 
of danger, nor are they simple culture absorbers. According to Maurer 
(1965) "they do not . . .  fear the things they have been taught to be careful 
about . . . .  The strange truth is that they fear an unrealistic source of danger 
in our urban civilization: wild animals" (p. 265). Indeed, almost all the 5- 
and 6-year-olds in Maurer's study of Chicago schoolchildren mentioned wild 
animals (most frequently snakes, lions, and tigers) in response to the 
question "What are the things to be afraid of?" Similarly, rats are not 
frequentists when it comes to pairing the taste of food with an electric 
shock, and virtually no experienced frequency of such pairings will produce 
the correct inference (Garcia & Koelling, 1966). 

Lastly, there might be cases in which ontogenetically observable fre- 
quencies are ignored by decision-making mechanisms even when a large 
database of relevant frequencies can, in principle, be observed during an 
individual's lifetime. For domains in which there are statistical relationships 
that have endured over long periods of evolutionary time, one might expect 
to find domain-specific inductive reasoning mechanisms that embody in- 
formation about these ancestral frequencies. In such cases, a cognitive 
system that assumes these relationships may be more efficient than one that 
must induce them de n o v o  each generation (e.g., Shepard, 1984, 1987). 

For example, an expanding body of literature in the field of cognitive 
development suggests that very small children have domain-specific induc- 
tive reasoning mechanisms that guide how they make inferences and thereby 
acquire knowledge in a given domain (e.g., Carey & Gelman, 1991; Gelman 



66 L. Cosmides, J. Tooby / Cognition 58 (1996) 1-73 

& Markman, 1986; Hirschfeld & Gelman, 1994; Keil, 1989; Leslie, 1987; 
Spelke, 1988, 1990). In this view, the principles that govern induction in one 
domain may differ profoundly from those that govern induction in another 
domain. So, for example, considerable evidence has accumulated over the 
past few years that very young children reliably develop cognitive processes 
that cause them to reason differently about people's mental states and 
behavior than they do about physical objects or about the plant and animal 
world (e.g., Astington, Harris, & Olson, 1988; Atran, 1990; Baron-Cohen, 
1994; Carey, 1985; Keil, 1989; Leslie, 1987, 1988; Spelke, 1988, 1990). 
Domain-specific inference procedures of this kind can supply a computation- 
al basis for decisions under uncertainty that is unrelated to frequencies that 
have been encoded by an individual during that individual's lifetime. For 
example, suppose you are looking for your dog. Initially, you think it likely 
that the dog is hiding under your bed, because this has often been true in 
the past (i.e., the prior probability that the dog is under the bed is high). 
Then you remember that because you sold the bedframe yesterday, your 
mattress is now flush to the floor. But if the mattress is flush to the floor, 
then the dog cannot be under it. Here, the revision of your initial prior 
probability is not based on new information about relative frequencies; it is 
based on cognitive mechanisms designed for reasoning about solid objects, 
which place constraints on the world of possibilities, such as that two 
physical objects cannot occupy the same space at the same time (Speike 
1988, 1990). 

Decision-making architectures of this kind may be considered "non- 
frequentist" in a number of different senses: 

(1) The weighting or "prior probability" assigned to a hypothesis need 
not be derived from ontogenetically encountered frequencies of the same 
event; it can be set phylogenetically (Staddon, 1988). 

(2) The revision of a prior probability need not be based on data on the 
relative frequency of the event in question. 

(3) The output of the mechanism may be a subjective degree of confi- 
dence, rather than a frequency. 19 

(4) The algorithms involved may compute Baconian, rather than Pas- 
calian, probabilities (Cohen 1979, 1989). Pascalian probabilities are com- 
puted over repetitions of equivalent events; the more often an outcome 
occurs, the higher its Pascalian probability. Baconian probabilities increase 
as one varies potential causes, eliminating confounds that could explain the 

19 Of course, this can also be true of a frequentist mechanism; even though it might initially 
output a frequency, and perhaps even store the information as such, other mechanisms may 
make that frequentist output consciously accessible in the form of a subjective degree of 
confidence. 
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data. Baconian "el iminat ive" induction is particularly important  in the 
evaluation of causal hypotheses. TM 

Of course, some inductive reasoning mechanisms may be hybrids, having 
some frequentist  and some non-frequentist  elements (see, for example,  
Gelman,  1990a, 1990b). 

Phylogenetically supplied information is useful as a guide to decision- 
making because much of the structure of the world does endure over  time: 
the statistical and structural properties of certain kinds of events do recur 
across generations. This recurrent structure of the world makes  possible the 
evolution of complex domain-specific inference engines that can exploit 
these enduring probabilistic relationships to improve decisions under uncer- 
tainty, either to supplement  ontogenetically observed frequencies or to 
opera te  in their absence. 

These domain-specific reasoning mechanisms might violate normative 
theories that draw their standards from context-free mathematical  analyses. 
Tha t  is because domain-specific mechanisms can draw on information about  
the present  situation based on the statistical structure of ancestral environ- 
ments;  in other words, they have a "crib sheet"  with added hints, clues or 
even answers, which a content-free mechanism does not (Tooby & Cos- 
mides, 1990, 1992a). Mathematically derived computat ional  theories might 
be more  appropriate  for precisely those domains for which we have not 
evolved domain-specific inference engines. But what kinds of domains 
would fall into this category? 

24.2. Architectures that process ontogenetically experienced frequencies 

Natural  selection is a slow process compared  to the length of an individual 
lifespan. Covariant  relationships must endure for a great many generations 
before  natural selection will modify cognitive adaptations to take them into 
account. But for those aspects of the world that change rapidly compared  to 

20 In evaluating the frequentist hypothesis, for example, you (the reader) used both Baconian 
and Pascalian probabilities. Although it was important to show that good bayesian performance 
with the pure frequentist problems was replicable-that is, that the hypothesis has a high 
Pascalian probability-doing the same experiment over and over again would not have 
convinced you that the frequentist hypothesis is true, because the performance could have been 
caused by non-frequentist aspects of the problem. So we tried to raise the Baconian probability 
of the frequentist hypothesis, by showing that (1) good bayesian performance cannot be 
produced by manipulating non-frequentist aspects of the problem (such as clarifying the 
meaning of "false positive rate"), and (2) it can be enhanced by amplifying frequentist 
variables (as in the active pictorial condition). If nothing had replicated, you would not have 
believed the hypothesis (low Pascalian probability), nor would you have believed it if we had 
not been able to isolate frequentist representations as the causal variable (low Baconian 
probability). 
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generation time, phylogenetically supplied information will be unreliable or 
absent. In such cases, observed frequencies over the lifespan will be the best 
available predictors. Architectures that can pick up and use this frequency 
information would be able to solve such problems. Hybrid designs that use 
domain-specific knowledge- for example, a phylogenetically supplied prior 
probabili ty-which is then revised based on observed frequencies can be 
expected where both phylogenetically and ontogenetically given information 
can jointly improve decision making. Staddon (1988) has argued that many 
learning mechanisms in nonhuman animals have hybrid designs of this kind, 
and Gelman (1990a, 1990b) has proposed similar designs for certain human 
learning mechanisms. 

Given the foregoing, inference mechanisms with architectures that process 
ontogenetically encoded frequency information should have evolved to 
analyze domains in which information decays rapidly across ontogeny (or at 
least across generations) and that tend to have large "ns" over the lifespan. 
A large part of the hunter-gatherer's world was comprised of rapidly 
decaying reference class interrelationships - the changing spatial and tempo- 
ral distributions of game, of plant foods, of predators, of daily weather, and 
so on. Phylogeny can supply nothing useful to predict those relationships 
that rapidly decay. In contrast, recent local sampling of frequencies can 
provide a reliable basis for prediction in such cases (see, for example, Real, 
1991, on foraging algorithms in bumblebees). Precisely because they are 
content-free, mathematically derived computational theories might be more 
appropriate for such relationships; where relationships are not stable over 
time, domain-specific processes cannot improve prediction. We are exposed 
to an ocean of rapidly decaying relationships in the modern world as well: 
the architecture of buildings in different parts of a city; the proportions of 
various dog breeds in the neighborhood; the proportions of various brands 
of microcomputer in the office complex; changing fashions in running shoes; 
the popularity of names over time, and so on. Frequency encoding 
mechanisms seem to pick up such information automatically. For instance, 
when asked to guess whether "Charles", "Ruth", "Jennifer" or "Jason" are 
over or under 40, people do so in a way that corresponds well with the 
actual frequency of names given to people of various generations (Karas & 
Eisenacher, reported in Brown, 1986, pp. 588-589). One expects architec- 
tures that embody content-free normative theories to process just those 
kinds of information that our domain-specific inductive architectures do not. 

Conclusions 

If the body of results indicating well-calibrated statistical performance 
continues to grow, then a new analytic framework may be required to 
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organize and explain the literature on judgment under uncertainty (see, for 
example, Gigerenzer, 1991; Gigerenzer & Murray, 1987; Tooby & Cos- 
mides, 1992b). Highly organized, well-calibrated performance cannot occur 
in the absence of well-designed cognitive mechanisms, so any new analytic 
framework must admit and explain the existence of such mechanisms. The 
evolutionary-functional framework proposed by Marr is particularly promis- 
ing: one looks for a mesh between the nature of the adaptive problem to be 
solved and the design of the algorithms and representations that evolved to 
solve it. Mathematics and evolutionary biology provide a broad assortment 
of alternative normative theories of statistical inference, appropriate to 
different kinds of adaptive problem. These can help one discover what 
cognitive processes govern inductive reasoning in various domains, and why 
they have the functional design they do. By locating functionality in its 
evolutionary and ecological context, performance that had previously 
looked erratic and erroneous may begin to look orderly and sophisticated. 

It may be time to return to a more Laplacian view, and grant human 
intuition a little more respect than it has recently been receiving. The 
evolved mechanisms that undergird our intuitions have been subjected to 
millions of years of field testing against a very rich and complexly structured 
environment. With only a few hundred years of normative theorizing under 
our belts, there may still be aspects of real-world statistical problems that 
have escaped us. Of course, no system will be completely error-free, even 
under natural conditions. But when intuition and probability theory appear 
to clash, it would seem both logical and prudent to at least consider the 
possibility that there may be a sophisticated logic to the intuition. We may 
discover that humans are good intuitive statisticians after all. 
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